Label objects for deep learning

Disponible con licencia de Image Analyst.

Disponible con una licencia de Spatial Analyst.

All supervised deep learning tasks depend on labeled datasets, which means humans must apply their knowledge to train the neural network on what it is working to identify. The labeled objects will be used by the neural network to train a model that can be used to perform inferencing on data.

Image annotation, or labeling, is vital for deep learning tasks such as computer vision and learning. A large amount of labeled data is required to train a good deep learning model. When the right training data is available, deep learning systems can be highly accurate in feature extraction, pattern recognition, and complex problem solving. The Label Objects for Deep Learning pane can be used to quickly and accurately label data.

The Label Objects for Deep Learning button is found in the Classification Tools drop-down menu, in the Image Classification group on the Imagery tab. The pane is divided into two parts. The top part of the pane is used for managing classes, and the bottom part of the pane is used for managing the collection of the samples and for exporting the training data for the deep learning frameworks.

Create classes and label objects

The top portion of the pane allows you to manage object classes and manually create the objects used for training the deep learning model. There are many tools available to help you create labeled objects.

ToolFunction
New Rectangle

Create a labeled object by drawing a rectangle around a feature or object in the raster.

New Polygon

Create a labeled object by drawing a polygon around a feature or object in the raster.

New Circle

Create a labeled object by drawing a circle around a feature or object in the raster.

New Lasso Area

Create a labeled object by drawing a freehand shape around a feature or object in the raster.

Seleccionar por polígono

Create a feature by selecting a segment from a segmented layer. This option is only available if there is a segmented layer in the Contents pane. Activate the Segment Picker by highlighting the segmented layer in the Contents pane, then select the layer from the Segment Picker drop-down list.

Editar

Select and edit a labeled object.

Nueva plantilla

Create a classification schema.

Examinar

Select a classification schema option.

  • Browse to an existing schema.
  • Generate a new schema from an existing training sample feature class.
  • Generate a new schema from an existing classified raster.
  • Use the default 2011 National Land Cover Database schema.

Guardar

Save changes to the schema.

Guardar ediciones

Save a new copy of the schema.

Agregar

Add a class category to the schema. Select the name of the schema first to create a parent class at the highest level. Select the name of an existing class to create a subclass.

Eliminar elementos seleccionados

Remove the selected class or subclass category from the schema.

  1. Click one of the sketch tools, such as Rectangle, Polygon, Circle, or Freehand, to begin collecting object samples.
  2. Using a sketch tool, delineate the image feature representing the object on the map.
    1. If you are creating a feature without a class specified, the Define Class dialog box appears. For more information about this dialog box, see the Define Class section.
  3. Continue to create and label objects as specified in the steps above.
  4. You can use the Labeled Objects tab (at the bottom of the pane) to delete and organize your labeled object samples.
  5. Once you are satisfied with all your labeled objects, save your samples by clicking the Save button Guardar on the Labeled Objects tab.

Now that you have manually labeled a representative sample of objects, these can be used to export your training data.

Define Class

The Define Class dialog box allows you to create a new class or define an existing class. If you choose Use Existing Class, select the appropriate Class Name option for that object. If you choose Add New Class, you can optionally edit the information and click OK to create the new class.

Labeled Objects

The Labeled Objects tab is located in the bottom section of the pane and manages the training samples you have collected for each class. Collect representative sites, or training samples, for each class in the image. A training sample has location information (polygon) and an associated class. The image classification algorithm uses the training samples, saved as a feature class, to identify the land cover classes in the entire image.

You can view and manage training samples by adding, grouping, or removing them. When you select a training sample, it is selected on the map. Double-click a training sample in the table to zoom to it on the map.

ToolFunction
Examinar

Open an existing training samples feature class.

Guardar

Save edits made to the current labeled objects feature class.

Guardar ediciones

Save the current labeled objects as a new feature class.

Eliminar elementos seleccionados

Delete the selected labeled objects.

Export Training Data

Once samples have been collected, you can export them into training data by clicking the Export Training Data tab. The training data can then be used in a deep learning model. Once the parameters have been filled in, click Run to create the training data.

ParameterDescription

Output Folder

Choose the output folder where the training data will be saved.

Mask Polygon Features

Una clase de entidad poligonal que delinea el área en la que se crearán los chips de imagen.

Solo se crean los chips de imagen que recaen completamente dentro de los polígonos.

Image Format

Specifies the raster format for the image chip outputs.

  • TIFF. This is the default.
  • MRF (Meta Raster Format).
  • PNG.
  • JPEG.

PNG y JPEG admiten hasta 3 bandas.

Tile Size X

El tamaño de los chips de imagen para la dimensión X.

Tile Size Y

El tamaño de los chips de imagen para la dimensión Y.

Stride X

La distancia a la que se desplaza la dirección X al crear los siguientes chips de imagen.

Cuando el paso equivale al tamaño de la tesela, no habrá ninguna superposición. Cuando el paso equivale a la mitad del tamaño de la tesela, habrá una superposición del 50 por ciento.

Stride Y

La distancia a la que se desplaza la dirección Y al crear los siguientes chips de imagen.

Cuando el paso equivale al tamaño de la tesela, no habrá ninguna superposición. Cuando el paso equivale a la mitad del tamaño de la tesela, habrá una superposición del 50 por ciento.

Rotation Angle

The rotation angle that will be used to generate additional image chips. An image chip will be generated with a rotation angle of 0, which means no rotation. It will then be rotated at the specified angle to create an additional image chip. The same training samples will be captured at multiple angles in multiple image chips for data augmentation. The default rotation angle is 0.

Output No Feature Tiles

Especifica si se exportarán los chips de imagen que no capturen muestras de entrenamiento.

  • Unchecked—Only image chips that capture training samples will be exported. This is the default.
  • Checked—All image chips, including those that do not capture training samples, will be exported.

Metadata format

Especifica el formato de las etiquetas de metadatos de salida.

Existen cinco opciones para las etiquetas de metadatos de salida de datos de entrenamiento: rectángulos KITTI, rectángulos PASCAL VOC, teselas clasificadas (un mapa de clase), máscaras RCNN y teselas etiquetadas. Si los datos de muestra de entrenamiento de entrada son una capa de clase de entidad, como por ejemplo una capa de edificios o un archivo de muestra de entrenamiento de clasificación estándar, utilice la opción de rectángulos KITTI o PASCAL VOC. Los metadatos de salida son un archivo .txt o un archivo .xml que contiene los datos de muestra de entrenamiento incluidos en el rectángulo mínimo de delimitación. El nombre del archivo de metadatos coincide con el nombre de la imagen de origen de entrada. Si los datos de muestra de entrenamiento de entrada son un mapa de clase, utilice la opción Teselas clasificadas como formato de metadatos de salida.

  • KITTI Labels—The metadata follows the same format as the Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) Object Detection Evaluation dataset. The KITTI dataset is a vision benchmark suite. The label files are plain text files. All values, both numerical and strings, are separated by spaces, and each row corresponds to one object.
  • PASCAL Visual Object Classes—The metadata follows the same format as the Pattern Analysis, Statistical Modeling and Computational Learning Visual Object Classes (PASCAL VOC) dataset. The PASCAL VOC dataset is a standardized image dataset for object class recognition. The label files are XML files and contain information about image name, class value, and bounding boxes. This is the default.
  • Classified Tiles—The output will be one classified image chip per input image chip. No other metadata for each image chip is used. Only the statistics output has more information on the classes, such as class names, class values, and output statistics.
  • RCNN Masks—The output will be image chips that have a mask on the areas where the sample exists. The model generates bounding boxes and segmentation masks for each instance of an object in the image. It's based on Feature Pyramid Network (FPN) and a ResNet101 backbone in the deep learning framework model.
  • Labeled Tiles—Each output tile will be labeled with a specific class. If you choose this metadata format, you can additionally refine the Blacken Around Feature and Crop Mode parameters.

El formato de metadatos KITTI permite 15 columnas, pero solo se utilizan 5 de ellas en la herramienta. La primera columna es el valor de clase. Las siguientes 3 columnas se omiten. Las columnas 5-8 definen el rectángulo mínimo de delimitación, que consta de 4 ubicaciones de coordenada de imagen: píxeles izquierdo, superior, derecho e inferior, respectivamente. El rectángulo mínimo de delimitación comprende el chip de formación utilizado en el clasificador de aprendizaje profundo. Las columnas restantes no se utilizan.

Blacken Around Feature

Especifica si se deben oscurecer los píxeles situados alrededor de cada objeto o entidad de cada tesela de imagen.

  • Desactivado: los píxeles que rodean a los objetos o entidades no se oscurecen. Esta es la opción predeterminada.
  • Activado: los píxeles que rodean a los objetos o entidades se oscurecen.

Este parámetro solo se aplica si el formato de metadatos establecido es Teselas etiquetadas y se ha especificado una clase de entidad de entrada o un ráster clasificado.

Crop Mode

Especifica si las teselas exportadas se deben recortar de forma que todas tengan el mismo tamaño.

  • Fixed size—Exported tiles will be the same size and will center on the feature. This is the default.
  • Bounding box—Exported tiles will be cropped so that the bounding geometry surrounds only the feature in the tile.

Este parámetro solo se aplica si el formato de metadatos establecido es Teselas etiquetadas y se ha especificado una clase de entidad de entrada o un ráster clasificado.

Reference System

Especifica el tipo de sistema de referencia que se desea usar para interpretar la imagen de entrada. El sistema de referencia especificado debe coincidir con el sistema de referencia utilizado para entrenar el modelo de aprendizaje profundo.

  • Map space—The input image is in a map-based coordinate system. This is the default.
  • Pixel space—The input image is in image space (rows and columns), with no rotation and no distortion.

The exported training data can now be used in a deep learning model.

Temas relacionados