Disponible con licencia de Image Analyst.
Disponible con una licencia de Spatial Analyst.
Resumen
Genera un dataset ráster multidimensional al combinar variables de ráster multidimensional existentes a lo largo de una dimensión.
Uso
Use el parámetro Definición de consolidación para elegir un intervalo con una palabra clave, un valor o un rango de valores. Por ejemplo, si cuenta con 30 años de datos de temperatura de la superficie del mar que se han recopilado diariamente y en cada 5 metros de profundidad hasta llegar a los 100 metros, puede utilizar las distintas opciones de intervalos en estos escenarios:
- Agregue datos de temperatura diarios en datos mensuales, donde el resultado es un ráster multidimensional con 12 periodos de tiempo, y cada periodo es la agregación de cada mes a lo largo de los años. Seleccione Palabra clave de intervalo y defina la palabra clave como Recurrente mensualmente.
- Agregue datos de temperatura diarios en datos mensuales, donde el resultado es un ráster multidimensional con 360 periodos, o bien 12 periodos de tiempo por año (30 años x 12 meses = 360 periodos). Seleccione Palabra clave de intervalo y defina la palabra clave como Mensualmente.
- Consolide datos de temperatura mensuales en intervalos de 4 meses. Seleccione Valor de intervalo, defina el Valor de intervalo a 4, y establezca la Unidad en Meses.
- Consolide datos de temperatura de 0 a 25 metros, después de 25 a 50 metros, por último, de 50 a 100 metros. Seleccione Rangos de intervalos y especifique las profundidades mínimas y máximas como 0 25; 25 50; 50 100.
Entre los datasets ráster multidimensionales admitidos se encuentran netCDF, GRIB, HDF y CRF de Esri. También se admiten datasets de mosaico multidimensionales.
Esta herramienta produce un dataset ráster multidimensional en formato de ráster de nube (CRF). En este momento, no se admite ningún otro formato de salida.
De forma predeterminada, la salida del ráster multidimensional se comprimirá con el tipo de compresión LZ77. Sin embargo, se recomienda que cambie el tipo de compresión a LERC y ajuste el Error máximo en función de sus datos. Por ejemplo, si espera que los resultados del análisis sean precisos hasta tres posiciones decimales, use 0,001 para el Error máximo. Lo mejor es evitar requisitos de precisión innecesarios, puesto que aumentarán el tiempo de procesamiento y el tamaño de almacenamiento.
Para cambiar el tipo de compresión, modifique la Configuración del entorno.
Sintaxis
AggregateMultidimensionalRaster(in_multidimensional_raster, dimension, {aggregation_method}, {variables}, {aggregation_def}, {interval_keyword}, {interval_value}, {interval_unit}, {interval_ranges}, {aggregation_function}, {ignore_nodata})
Parámetro | Explicación | Tipo de datos |
in_multidimensional_raster | El dataset ráster multidimensional de entrada. | Raster Dataset; Raster Layer; Mosaic Dataset; Mosaic Layer; Image Service; File |
dimension | La dimensión de consolidación. Esta es la dimensión a lo largo de la cual se consolidan las variables. | String |
aggregation_method (Opcional) | Especifica el método matemático que se utilizará para combinar las porciones agregadas en un intervalo.
Cuando aggregation_method se configura como CUSTOM, el parámetro aggregation_function pasa a estar disponible. | String |
variables [variables,...] (Opcional) | Las variables que se agregarán a lo largo de la dimensión determinada. Si no se especifica ninguna variable, se agregarán todas las variables con la dimensión seleccionada. Por ejemplo, para agregar datos de temperatura diarios en valores promedio mensuales, especifique la temperatura como la variable que se agregará. Si no especifica ninguna variable y no cuenta con variables de temperatura y precipitaciones diarias, ambas variables se agregarán en promedios mensuales y estarán incluidas en el ráster multidimensional de salida. | String |
aggregation_def (Opcional) | Especifica el intervalo de dimensión en el que se agregarán los datos.
| String |
interval_keyword (Opcional) | Especifica el intervalo de palabra clave que se usará al agregar a lo largo de la dimensión. Este parámetro es obligatorio si el parámetro aggregation_def se define como INTERVAL_KEYWORD y, además, la agregación debe ser a lo largo del tiempo.
| String |
interval_value (Opcional) | El tamaño del intervalo que se utilizará para la agregación. Este parámetro es obligatorio si el parámetro aggregation_def se define como INTERVAL_VALUE. Por ejemplo, para consolidar 30 años de datos de temperatura mensuales en incrementos de 5 años, introduzca 5 como el interval_value y especifique la interval_unit como YEARS. | Double |
interval_unit (Opcional) | La unidad que se usará para el parámetro interval_value. Este parámetro es obligatorio si el parámetro dimension se define como un campo de tiempo y el parámetro aggregation_def se define como INTERVAL_VALUE. Si agrega algo que no sea tiempo, esta opción no estará disponible y la unidad del valor de intervalo coincidirá con la unidad de variable de los datos ráster multidimensionales de entrada.
| String |
interval_ranges [interval_ranges,...] (Opcional) | Se usarán los rangos de intervalos especificados en una tabla de valores para agregar grupos de valores. La tabla de valores consiste en pares de valores de rango mínimo y máximo, siendo el tipo de datos Doble o Fecha. Este parámetro es obligatorio si el parámetro aggregation_def se define como INTERVAL_RANGE. | Value Table |
aggregation_function (Opcional) | Una función ráster personalizada que se usará para calcular los valores de píxel de los rásteres agregados. La entrada es un objeto JSON de función ráster, un archivo .rft.xml creado a partir de una cadena de función o una función ráster de Python personalizada. Este parámetro es obligatorio si el parámetro aggregation_method se define como CUSTOM. | File; String |
ignore_nodata (Opcional) | Especifica si los valores NoData se ignorarán en el análisis.
| Boolean |
Valor de retorno
Nombre | Explicación | Tipo de datos |
out_multidimensional_raster | El dataset ráster multidimensional de formato de ráster de nube (CRF) de salida. | Raster |
Muestra de código
Este ejemplo agrega datos de temperatura en datos anuales con los valores medios de temperatura.
import arcpy
from arcpy import env
from arcpy.sa import *
env.workspace = "C:/sapyexamples/data"
arcpy.CheckOutExtension("Spatial")
outAggMultidim = AggregateMultidimensionalRaster("C:/sapyexamples/data/climateData.crf",
"StdTime", "MEAN", "temperature", "INTERVAL_KEYWORD", "YEARLY",
"", "", "", "", "DATA")
outAggMultidim.save("C:/sapyexamples/output/YearlyTemp.crf")
Este ejemplo agrega datos de temperatura y precipitaciones diarias en datos mensuales con los valores medios de temperatura y precipitación máxima.
# Name: AggregateMultidimensionalRaster_Ex_02.py
# Description: Aggregates daily precipitation and temperature data into
# monthly data with the maximum precipitation and temperature values
# Requirements: Spatial Analyst Extension
# Import system modules
import arcpy
from arcpy import env
from arcpy.sa import *
# Set environment settings
env.workspace = "C:/sapyexamples/data"
# Check out the ArcGIS Spatial Analyst extension license
arcpy.CheckOutExtension("Spatial")
""""
Usage: out_multidimensional_raster = AggregateMultidimensionalRaster(in_multidimensional_raster, dimension,
{aggregation_method}, {variables},
{aggregation_def}, {interval_keyword}, {ignore_nodata})
"""
# Define input parameters
inputFile = "C:/sapyexamples/data/dailyclimateData.crf"
dimensionName = "StdTime"
aggregationMethod = "Maximum"
variables = "temperature;precipitation"
aggregationDefinition = "INTERVAL_KEYWORD"
keyword = "MONTHLY"
ignore_nodata = "DATA"
# Execute AggregateMultidimensionalRaster
outAggMultidim = AggregateMultidimensionalRaster(inputFile, dimensionName,
aggregationMethod, variables, aggregationDefinition, keyword, "", "", "", "",
ignore_nodata)
# Save the output
outAggMultidim.save("C:/sapyexamples/output/monthlymaxtemp.crf")
Entornos
Información de licenciamiento
- Basic: Requiere Spatial Analyst o Image Analyst
- Standard: Requiere Spatial Analyst o Image Analyst
- Advanced: Requiere Spatial Analyst o Image Analyst