Disponible con licencia de Image Analyst.
Resumen
Creates a raster object by combining slices from the input multidimensional raster based on a dimension interval and an aggregation method.
Debate
Use the Aggregate function to aggregate variable values from a multidimensional raster over a given variable. For example, if you have daily precipitation data, you can determine the monthly average precipitation value.
This function creates a raster object that is the aggregation of the input multidimensional raster. By default, aggregation will be computed for all variables that are associated with the given dimension. For example, if precipitation, temperature, and wind speed all have a time dimension, all three variables will be aggregated separately if dimension_name is set to the time dimension. If you only want to aggregate one variable, use the Subset function before you use Aggregate.
The referenced raster dataset for the raster object is temporary. To make it permanent, you can call the raster object's save method.
Sintaxis
Aggregate (in_raster, dimension_name, {PercentileContinueOnNoData}, raster_function, {raster_function_arguments}, {aggregation_definition})
Parámetro | Explicación | Tipo de datos |
in_raster | The input multidimensional raster to be aggregated. | Raster |
dimension_name | The aggregation dimension. This is the dimension along which the variables will be aggregated. | String |
PercentileContinueOnNoData | NoData will be ignored. | String |
raster_function | The name of a raster function as a string or the path to a custom raster function (.rft.xml file) used to compute the aggregated pixel values. Supported raster functions as strings include the following:
| String |
raster_function_arguments | The parameters and values associated with the raster function or function chain. If not specified, default values will be used. | Dictionary |
aggregation_definition | The dimension interval for which the data will be aggregated. The key-value pairs must follow one of the following formats:
If not specified, all slices across the dimension will be aggregated. | Dictionary |
Tipo de datos | Explicación |
Raster | The output aggregated multidimensional raster. |
Muestra de código
Aggregate precipitation data by calculating the overall average, monthly average, minimum over 10 days, and maximum over 2 ranges.
import arcpy
from arcpy.ia import *
arcpy.CheckOutExtension("ImageAnalyst")
in_raster = Raster('ClimateData_Daily.nc', True)
# Choose the precipitation variable
prcp_raster = Subset(in_raster, variables = 'prcp')
# Calculate the average precipitation across the whole time period
avg_prcp = Aggregate(prcp_raster, 'StdTime', 'Mean')
# Calculate the monthly mean precipitation
monthly_avg_prcp = Aggregate(prcp_raster, 'StdTime',
'Mean', {'interval': 'monthly'})
# Calculate the minimum precipitation every 10 days
min_precip_10day = Aggregate(prcp_raster, 'StdTime', 'Min',
{'interval_value' : 10, 'interval_unit': 'day'})
# Calculate the maximum precipitation in two separate time ranges
max_prcp_range = Aggregate(prcp_raster, 'StdTime', 'Max',
{'interval_ranges': [('2001-01-01T00:00:00', '2001-02-01T00:00:00'),
('2001-12-01T00:00:00', '2001-12-24T00:00:00')]})