An overview of the Deep Learning toolset

Disponible avec une licence Image Analyst.

The Deep Learning toolset contains tools to detect specific features in an image or to classify pixels in a raster dataset.

Deep learning is a type of machine learning artificial intelligence that detects features in imagery using multiple layers in neural networks in which each layer is capable of extracting one or more unique features in the image. The tools in the Deep Learning toolset take advantage of GPU processing to perform analysis in a timely manner.

These ArcGIS Pro tools consume the models that have been trained to detect specific features in third-party deep learning frameworks—such as TensorFlow, CNTK, and PyTorch—and output features or class maps.

The following table lists the available deep learning tools and provides a brief description of each:

ToolDescription

Classify Objects Using Deep Learning

Exécute un modèle d’apprentissage profond entraîné sur un raster en entrée et une classe d’entités facultative afin de générer une classe d’entités ou une table dans laquelle un objet ou une entité en entrée a une catégorie ou une étiquette de classe attribuée.

Cet outil nécessite un fichier de définition de modèle contenant des informations de modèle entraîné. Le modèle peut être entraîné avec l’outil Préparer le modèle d’apprentissage profond ou par un logiciel d’entraînement tiers tel que TensorFlow, PyTorch ou Keras. Le fichier de définition de modèle peut être un fichier JSON de définition de modèle Esri (.emd) ou un paquetage de modèle d’apprentissage profond et doit contenir le chemin d’accès à la fonction raster Python à appeler pour traiter chaque objet, ainsi que le chemin d’accès au fichier de modèle d’apprentissage profond binaire entraîné.

Classify Pixels Using Deep Learning

Exécute un modèle d’apprentissage profond entraîné sur un raster en entrée afin de générer un raster classé, une étiquette de classe étant attribuée à chaque pixel valide.

Cet outil nécessite un fichier de définition de modèle contenant des informations de modèle entraîné. Le modèle peut être entraîné avec l’outil Préparer le modèle d’apprentissage profond ou par un logiciel d’entraînement tiers tel que TensorFlow, PyTorch ou Keras. Le fichier de définition de modèle peut être un fichier JSON de définition de modèle Esri (.emd) ou un paquetage de modèle d’apprentissage profond et doit contenir le chemin d’accès à la fonction raster Python à appeler pour traiter chaque objet, ainsi que le chemin d’accès au fichier de modèle d’apprentissage profond binaire entraîné.

Compute Accuracy For Object Detection

Calcule la précision d’un modèle d’apprentissage profond en comparant les objets détectés par l’outil Détecter des objets à l’aide de l’apprentissage profond aux données de réalité de terrain.

Detect Objects Using Deep Learning

Exécute un modèle d’apprentissage profond formé sur un raster en entrée pour générer une classe d'entités contenant les objets qu’il trouve. Les entités peuvent correspondre à des emprises ou des polygones autour des objets trouvés ou encore des points situés aux centres des objets.

Cet outil nécessite un fichier de définition de modèle contenant des informations de modèle entraîné. Le modèle peut être entraîné avec l’outil Préparer le modèle d’apprentissage profond ou par un logiciel d’entraînement tiers tel que TensorFlow, PyTorch ou Keras. Le fichier de définition de modèle peut être un fichier JSON de définition de modèle Esri (.emd) ou un paquetage de modèle d’apprentissage profond et doit contenir le chemin d’accès à la fonction raster Python à appeler pour traiter chaque objet, ainsi que le chemin d’accès au fichier de modèle d’apprentissage profond binaire entraîné.

Export Training Data For Deep Learning

Convertit des données vectorielles ou raster étiquetées en jeux de données d’entraînement pour l’apprentissage profond via une image télédétectée. La sortie est un dossier de fragments d’image et un dossier de fichiers de métadonnées au format spécifié.

Non Maximum Suppression

Identifies duplicate features from the output of the Detect Objects Using Deep Learning tool as a postprocessing step and creates a new output with no duplicate features. The Detect Objects Using Deep Learning tool can return more than one bounding box or polygon for the same object, especially as a tiling side effect. If two features overlap more than a given maximum ratio, the feature with the lower confidence value will be removed.

Train Deep Learning Model

Entraîne un modèle d’apprentissage profond à l’aide de la sortie de l’outil Export Training Data For Deep Learning (Exporter les données d’entraînement pour l’apprentissage profond).

Tools of the Deep Learning toolset

Rubriques connexes