Polygon

Synthèse

A Polygon object is a closed shape defined by a connected sequence of x,y coordinate pairs.

Discussion

Dans de nombreux workflows de géotraitement, vous devez éventuellement exécuter une opération spécifique à l'aide d'informations sur les coordonnées et la géométrie, sans vouloir nécessairement créer une nouvelle classe d'entités (temporaire), la remplir avec des curseurs, l'utiliser, puis la supprimer. Les objets géométrie peuvent alors être utilisés en entrée et en sortie afin de simplifier le géotraitement. Les objets géométrie peuvent être entièrement créés à l'aide des classes Geometry, Multipoint, PointGeometry, Polygon ou Polyline.

During the creation of a geometry object, a simplification process is performed to make the geometry topologically consistent according to its geometry type. For instance, it rectifies polygons that may be self-intersecting or contain incorrect ring orientations. Coordinates may move within the resolution of the geometry's spatial reference.

The following operators can be used in place of geometry methods:

Python operatorGeometry method

+

intersect

|

union

-

difference

^

symmetricDifference

==

equals

!=

not equals

For example, to union two geometry objects, g3 = g1 | g2 is equivalent to g3 = g1.union(g2).

The + operator will use the geometry type (dimension) of the first geometry to determine the geometry type of the output.

Syntaxe

 Polygon (inputs, {spatial_reference}, {has_z}, {has_m}, {has_id})
ParamètreExplicationType de données
inputs

The coordinate information used to create the object. The data type can be Point or Array objects.

Object
spatial_reference

The spatial reference of the new geometry.

(La valeur par défaut est None)

SpatialReference
has_z

Specifies whether the geometry will be z-enabled.

(La valeur par défaut est False)

Boolean
has_m

Specifies whether the geometry will be m-enabled.

(La valeur par défaut est False)

Boolean
has_id

Specifies whether the geometry will support point IDs.

(La valeur par défaut est False)

Boolean

Propriétés

PropriétéExplicationType de données
JSON
(Lecture seule)

An Esri JSON representation of the geometry as a string.

Conseil :

The returned string can be converted to a dictionary using the json module's loads function.

String
WKB
(Lecture seule)

The well-known binary (WKB) representation for OGC geometry. This property provides a portable representation of a geometry value as a contiguous stream of bytes.

Bytearray
WKT
(Lecture seule)

The well-known text (WKT) representation for OGC geometry. This property provides a portable representation of a geometry value as a text string.

Any true curves in the geometry will be densified into approximate curves in the WKT string.

String
area
(Lecture seule)

The area of a polygon feature. The area is zero for all other feature types.

Double
centroid
(Lecture seule)

The true centroid if it is within or on the feature; otherwise, it is the label point.

Point
extent
(Lecture et écriture)

The extent of the geometry.

Extent
firstPoint
(Lecture seule)

The first coordinate point of the geometry.

Point
hasCurves
(Lecture seule)

Specifies whether the geometry has a curve.

Boolean
hullRectangle
(Lecture seule)

A space-delimited string of the coordinate pairs of the convex hull rectangle.

String
isMultipart
(Lecture seule)

Specifies whether the number of parts for the geometry is more than one.

Boolean
labelPoint
(Lecture seule)

The point at which the label is located. This point is always located within or on a feature.

Point
lastPoint
(Lecture seule)

The last coordinate of the feature.

Point
length
(Lecture seule)

The length of the linear feature. The calculation uses 2D Cartesian mathematics.

For point and multipoint geometry, the length will be zero. For polygon geometry, the length will be the 2D length of the boundary.

Double
length3D
(Lecture seule)

The 3D length of the linear feature. The calculation uses 3D Cartesian mathematics.

For point and multipoint geometry, the length will be zero. For polygon geometry, the length will be the 3D length of the boundary.

Attention :

The operation does not perform unit conversion between the horizontal and the vertical coordinate systems. The x, y, and z coordinates are assumed to be in the same linear unit.

Attention :

This property is only available for projected data.

Double
partCount
(Lecture seule)

The number of geometry parts for the feature.

Integer
pointCount
(Lecture seule)

The total number of points for the feature.

Integer
spatialReference
(Lecture seule)

The spatial reference of the geometry.

SpatialReference
trueCentroid
(Lecture seule)

The center of gravity for a feature.

Point
type
(Lecture seule)

The geometry type: polygon, polyline, point, or multipoint.

String

Vue d’ensemble des méthodes

MéthodeExplication
angleAndDistanceTo (other, {method})

Returns a tuple of angle and distance to a point or polygon.

boundary ()

Constructs the boundary of the geometry.

Boundary operator
buffer (distance)

Constructs a polygon at a specified distance from the geometry.

Buffer operator
clip (envelope)

Constructs the intersection of the geometry and the specified extent.

Clip operator
contains (second_geometry, {relation})

Indicates if the base geometry contains the comparison geometry.

contains is the opposite of within.

Only True relationships are shown in this illustration.

Possible contains relationships
convexHull ()

Constructs the geometry that is the minimal bounding polygon such that all outer angles are convex.

ConvexHull operator
crosses (second_geometry)

Indique si les deux géométries s'intersectent dans une géométrie de type de forme inférieure.

Deux polylignes se croisent si elles partagent uniquement des points, dont au moins un n'est pas une extrémité. Une polyligne et un polygone se croisent s'ils partagent une polyligne ou un point (pour une ligne verticale) à l'intérieur du polygone qui n'est pas équivalent à la polyligne entière.

Only True relationships are shown in this illustration.

Relations crosses possibles
cut (cutter)

Splits this geometry into a part left of the cutting polyline, and a part right of it.

When a polyline or polygon is cut, it is split where it intersects the cutter polyline. Each piece is classified as left of or right of the cutter. This classification is based on the orientation of the cutter line. Parts of the target polyline that do not intersect the cutting polyline are returned as part of the right of result for that input polyline. If a geometry is not cut, the left geometry will be empty (None).

Cut operator
densify (method, distance, {deviation})

Creates a geometry with added vertices.

difference (other)

Constructs the geometry that is composed only of the region unique to the base geometry but not part of the other geometry. The following illustration shows the results when the red polygon is the source geometry.

Difference operator
disjoint (second_geometry)

Indique si la géométrie de base et la géométrie de comparaison n'ont aucun point en commun.

Deux géométries s'intersectent si la propriété disjoint renvoie False.

Only True relationships are shown in this illustration.

Relations disjoint possibles
distanceTo (other)

Returns the minimum distance between two geometries. The distance is in the units of the geometry's spatial reference. If the geometries intersect, the minimum distance is 0.

Both geometries must have the same projection.

equals (second_geometry)

Indicates if the base and comparison geometries are of the same shape type and define the same set of points in the plane. This is a 2D comparison only; M and Z values are ignored.

Only True relationships are shown in this illustration.

Possible equals relationships
generalize (max_offset)

Creates a new simplified geometry using a specified maximum offset tolerance.

getArea ({method}, {units})

Returns the area of the feature using a measurement method.

getLength ({method}, {units})

Returns the length of the feature using a measurement method.

getPart ({index})

Returns an Array object of Point objects for a particular part of the geometry if an index is specified. If an index is not specified, an Array object containing an Array of Point objects for each geometry part is returned.

The getPart method is equivalent to indexing an object; that is, obj.getPart(0) is equivalent to obj[0].

intersect (other, dimension)

Constructs a geometry that is the geometric intersection of the two input geometries. Different dimension values can be used to create different shape types.

The intersection of two geometries of the same shape type is a geometry containing only the regions of overlap between the original geometries.

Intersect operator

For faster results, test if the two geometries are disjoint before calling intersect.

move ({dx}, {dy}, {dz})

Moves a geometry by specified distances along the x-, y-, and z-axes to create a new geometry.

overlaps (second_geometry)

Indique si l'intersection des deux géométries possède le même type de forme que l'une des géométries en entrée et qu'elle n'est pas équivalente à l'une des géométries en entrée.

Only True relationships are shown in this illustration.

Relations overlaps possibles
pointFromAngleAndDistance (angle, distance, {method})

Returns a point at a given angle in degrees and distance in the units of the geometry's spatial reference using the specified measurement type.

positionAlongLine (value, {use_percentage}, {geodesic})

Returns a point on a line at a specified distance from the beginning of the line.

projectAs (spatial_reference, {transformation_name})

Projects a geometry and optionally applies a geotransformation.

To project a geometry, the geometry must have a spatial reference and not an unknown coordinate system. The new spatial reference system passed to the method defines the output coordinate system. If either spatial reference is unknown, the coordinates will not be changed. The z- and m-values are not changed by the projectAs method.

scale ({origin}, {sx}, {sy}, {sz})

Scales a geometry from a specified origin by specified factors along the x-, y-, and z-axes to create a new geometry. The position of a transformed point (or vertex) is given by

( (x - origin_x) * scale_x + origin_x, (y - origin_y) * scale_y + origin_y, (z - origin_z) * scale_z + origin_z )

The transformation is applied relative to the origin, so that the origin remains stationary while the geometry expands or contracts around it. The position and the direction of the expansion or contraction for the resulting geometries is significantly affected by the origin.

The following describes a few possible choices for the origin and its affect on the output:

  • The origin is outside the geometry (not within or touching the geometry)—The size and location of the geometry will change, but the geometry will maintain relative positions to other geometries scaled in the same way. Positions will expand away from or contract toward the origin point.

    Origin outside the geometry

  • The origin is at the centroid of the geometry (if the centroid is within or touching geometry)—The size of the geometry will change, but the geometry's location will remain anchored at the centroid. The geometry will grow or shrink in place around the centroid.

    Origin at the centroid of the geometry

  • The origin is on a vertex of the geometry—The size of the geometry will change, but the position of the geometry will remain anchored at the chosen vertex. The geometry will grow from or shrink toward the chosen vertex.

    Origin on a vertex of the geometry

symmetricDifference (other)

Constructs the geometry that is the union of two geometries minus the instersection of those geometries.

The two input geometries must be the same shape type.

symmetricDifference operator
touches (second_geometry)

Indicates if the boundaries of the geometries intersect.

Two geometries touch when the intersection of the geometries is not empty, but the intersection of their interiors is empty. For example, a point touches a polyline only if the point is coincident with one of the polyline end points.

Only True relationships are shown in this illustration.

Possible touches relationships
union (other)

Constructs the geometry that is the set-theoretic union of the input geometries.

The two geometries being unioned must be the same shape type.

Union operator
within (second_geometry, {relation})

Indicates if the base geometry is within the comparison geometry.

within is the opposite operator of contains.

Only True relationships are shown in this illustration.

Possible within relationships

The base geometry is within the comparison geometry if the base geometry is the intersection of the geometries and the intersection of their interiors is not empty. within is a Clementini operator, except in the case of an empty base geometry.

Méthodes

angleAndDistanceTo (other, {method})
ParamètreExplicationType de données
other

The second geometry. If the geometry is a polygon, the distance is measured to the centroid of the polygon.

PointGeometry
method

The method used to measure distance.

  • GEODESICThe shortest line between any two points on the earth's surface on a spheroid (ellipsoid). One use for a geodesic line is to determine the shortest distance between two cities for an airplane's flight path. This is also known as a great circle line if based on a sphere rather than an ellipsoid.
  • GREAT_ELLIPTICThe line on a spheroid (ellipsoid) defined by the intersection at the surface by a plane that passes through the center of the spheroid and the start and endpoints of a segment. This is also known as a great circle when a sphere is used.
  • LOXODROMEThe line follows a single compass bearing, or azimuth. Great circle routes are often broken into a series of loxodromes, which simplifies navigation. This is also known as a rhumb line.
  • PLANARPlanar measurements use 2D Cartesian mathematics to calculate lengths and areas. This option is only available when measuring in a projected coordinate system and the 2D plane of that coordinate system will be used as the basis for the measurements. Planar measurements reflect the projection of geographic data onto a 2D surface, and do not account for the curvature of the earth.
  • PRESERVE_SHAPEThis type calculates the area or length of the geometry on the surface of the earth ellipsoid, for geometry defined in a projected or geographic coordinate system. This option preserves the shape of the geometry in its coordinate system.

(La valeur par défaut est GEODESIC)

String
Valeur renvoyée
Type de donnéesExplication
tuple

Returns a tuple of angle (in degrees) and distance (in meters) to another point.

boundary ()
Valeur renvoyée
Type de donnéesExplication
Object

A polygon's boundary is a polyline. A polyline's boundary is a multipoint, corresponding to the endpoints of the line. A point or multipoint's boundary is an empty point or multipoint.

buffer (distance)
ParamètreExplicationType de données
distance

The buffer distance.

The buffer distance is in the same units as the geometry that is being buffered.

A negative distance can only be specified against a polygon geometry.

Double
Valeur renvoyée
Type de donnéesExplication
Polygon

The buffered polygon geometry.

clip (envelope)
ParamètreExplicationType de données
envelope

An Extent object used to define the clip extent.

Extent
Valeur renvoyée
Type de donnéesExplication
Object

An output geometry clipped to the specified extent.

contains (second_geometry, {relation})
ParamètreExplicationType de données
second_geometry

A second geometry.

Object
relation

The spatial relationship type.

  • BOUNDARY Relationship has no restrictions for interiors or boundaries.
  • CLEMENTINI Interiors of geometries must intersect. Specifying CLEMENTINI is equivalent to specifying None. This is the default.
  • PROPER Boundaries of geometries must not intersect.

(La valeur par défaut est None)

String
Valeur renvoyée
Type de donnéesExplication
Boolean

A return Boolean value of True indicates this geometry contains the second geometry.

convexHull ()
Valeur renvoyée
Type de donnéesExplication
Object

The resulting geometry. The convex hull of a single point is the point itself.

crosses (second_geometry)
ParamètreExplicationType de données
second_geometry

A second geometry.

Object
Valeur renvoyée
Type de donnéesExplication
Boolean

Une valeur booléenne renvoyée True indique que les deux géométries s'intersectent dans une géométrie de type de forme inférieure.

cut (cutter)
ParamètreExplicationType de données
cutter

The cutting polyline geometry.

PolyLine
Valeur renvoyée
Type de donnéesExplication
Geometry

A list of two geometries.

densify (method, distance, {deviation})
ParamètreExplicationType de données
method

The method of densification.

  • DISTANCECreates a feature that is a piecewise linear approximation of the input.
  • ANGLECreates a feature that is a piecewise linear approximation of the input. Vertices are introduced at points where the angle between tangents at those points is the provided angle.
  • GEODESICDensifies and reshapes segments between input vertices so that the output segments follow the shortest ground path connecting input vertices.
String
distance

The maximum distance between vertices. The actual distance between vertices will usually be less than the maximum distance, as new vertices will be evenly distributed along the original segment.

If using a type of DISTANCE or ANGLE, the distance is measured in the units of the geometry's spatial reference. If using a type of GEODESIC, the distance is measured in meters.

Double
deviation

Densify uses straight lines to approximate curves. You use deviation to control the accuracy of this approximation. The deviation is the maximum distance between the new segment and the original curve. The smaller its value, the more segments will be required to approximate the curve.

If using a type of DISTANCE, the deviation is measured in the units of the geometry's spatial reference. If using a type of ANGLE, the deviation is measured in radians. If using a type of GEODESIC, the deviation is not used.

Double
Valeur renvoyée
Type de donnéesExplication
Geometry

The densified geometry.

difference (other)
ParamètreExplicationType de données
other

A second geometry.

Object
Valeur renvoyée
Type de donnéesExplication
Object

The resulting geometry.

disjoint (second_geometry)
ParamètreExplicationType de données
second_geometry

A second geometry.

Object
Valeur renvoyée
Type de donnéesExplication
Boolean

Une valeur booléenne renvoyée True indique que les deux géométries n'ont aucun point en commun.

distanceTo (other)
ParamètreExplicationType de données
other

A second geometry.

Object
Valeur renvoyée
Type de donnéesExplication
Double

The distance between the two geometries.

equals (second_geometry)
ParamètreExplicationType de données
second_geometry

A second geometry.

Object
Valeur renvoyée
Type de donnéesExplication
Boolean

A return Boolean value of True indicates that the two geometries are of the same shape type and define the same set of points in the plane.

generalize (max_offset)
ParamètreExplicationType de données
max_offset

The maximum offset tolerance.

Double
Valeur renvoyée
Type de donnéesExplication
Geometry

The generalized geometry.

getArea ({method}, {units})
ParamètreExplicationType de données
method

The method used to measure area.

  • GEODESICThe shortest line between any two points on the earth's surface on a spheroid (ellipsoid). One use for a geodesic line is to determine the shortest distance between two cities for an airplane's flight path. This is also known as a great circle line if based on a sphere rather than an ellipsoid.
  • GREAT_ELLIPTICThe line on a spheroid (ellipsoid) defined by the intersection at the surface by a plane that passes through the center of the spheroid and the start and endpoints of a segment. This is also known as a great circle when a sphere is used.
  • LOXODROMEThe line follows a single compass bearing, or azimuth. Great circle routes are often broken into a series of loxodromes, which simplifies navigation. This is also known as a rhumb line.
  • PLANARPlanar measurements use 2D Cartesian mathematics to calculate lengths and areas. This option is only available when measuring in a projected coordinate system and the 2D plane of that coordinate system will be used as the basis for the measurements. Planar measurements reflect the projection of geographic data onto a 2D surface, and do not account for the curvature of the earth.
  • PRESERVE_SHAPEThis type calculates the area or length of the geometry on the surface of the earth ellipsoid, for geometry defined in a projected or geographic coordinate system. This option preserves the shape of the geometry in its coordinate system.

(La valeur par défaut est GEODESIC)

String
units

The units in which the area will be calculated.

Learn more about area units

  • SquareKilometersSquare kilometers
  • HectaresHectares
  • AresAres
  • SquareMetersSquare meters
  • SquareDecimetersSquare decimeters
  • SquareCentimetersSquare centimeters
  • SquareMillimetersSquare millimeters
  • SquareMilesIntSquare statute miles
  • AcresIntInternational acres
  • SquareYardsIntSquare international yards
  • SquareFeetIntSquare international feet
  • SquareInchesIntSquare international inches
  • SquareMilesUSSquare US survey miles
  • AcresUSSquare US survey acres
  • SquareYardsUSSquare US survey yards
  • SquareFeetUSSquare US survey feet
  • SquareInchesUSSquare US survey inches
  • UnknownUnknown
String
Valeur renvoyée
Type de donnéesExplication
Double

The area of the feature.

By default, for projected coordinate systems, area will be returned in the units of the coordinate system, and for geographic coordinate systems, area will be returned in square meters.

getLength ({method}, {units})
ParamètreExplicationType de données
method

The method used to measure length.

  • GEODESICThe shortest line between any two points on the earth's surface on a spheroid (ellipsoid). One use for a geodesic line is to determine the shortest distance between two cities for an airplane's flight path. This is also known as a great circle line if based on a sphere rather than an ellipsoid.
  • GREAT_ELLIPTICThe line on a spheroid (ellipsoid) defined by the intersection at the surface by a plane that passes through the center of the spheroid and the start and endpoints of a segment. This is also known as a great circle when a sphere is used.
  • LOXODROMEThe line follows a single compass bearing, or azimuth. Great circle routes are often broken into a series of loxodromes, which simplifies navigation. This is also known as a rhumb line.
  • PLANARPlanar measurements use 2D Cartesian mathematics to calculate lengths and areas. This option is only available when measuring in a projected coordinate system and the 2D plane of that coordinate system will be used as the basis for the measurements. Planar measurements reflect the projection of geographic data onto a 2D surface, and do not account for the curvature of the earth.
  • PRESERVE_SHAPEThis type calculates the area or length of the geometry on the surface of the earth ellipsoid, for geometry defined in a projected or geographic coordinate system. This option preserves the shape of the geometry in its coordinate system.

(La valeur par défaut est GEODESIC)

String
units

The units in which the length will be calculated.

Learn more about linear units

  • KilometersKilometers
  • MetersMeters
  • DecimetersDecimeters
  • MillimetersMillimeters
  • CentimetersCentimeters
  • NauticalMilesIntInternational nautical miles
  • MilesIntStatute miles
  • YardsIntInternational yards
  • FeetIntInternational feet
  • InchesIntInternational inches
  • NauticalMilesUS survey nautical miles
  • MilesUS survey miles
  • YardsUS survey yards
  • FeetUS survey feet
  • InchesUS survey inches
  • DecimalDegreesDecimal degrees
  • PointsPoints
  • UnknownUnknown
String
Valeur renvoyée
Type de donnéesExplication
Double

The length of the feature.

By default, for projected coordinate systems, length will be returned in the units of the coordinate system, and for geographic coordinate systems, length will be returned in square meters.

getPart ({index})
ParamètreExplicationType de données
index

The index position of the geometry.

Integer
Valeur renvoyée
Type de donnéesExplication
Array

The resultant Array object.

intersect (other, dimension)
ParamètreExplicationType de données
other

The second geometry.

Object
dimension

The topological dimension (shape type) of the resulting geometry.

  • 1A zero-dimensional geometry (point or multipoint).
  • 2A one-dimensional geometry (polyline).
  • 4A two-dimensional geometry (polygon).
Integer
Valeur renvoyée
Type de donnéesExplication
Object

A new geometry (point, multipoint, polyline, or polygon) that is the geometric intersection of the two input geometries.

move ({dx}, {dy}, {dz})
ParamètreExplicationType de données
dx

The distance the geometry will be moved along the x-axis.

(La valeur par défaut est 0.0)

Double
dy

The distance the geometry will be moved along the y-axis.

(La valeur par défaut est 0.0)

Double
dz

The distance the geometry will be moved along the z-axis. The geometry must be z-aware and have z-values.

(La valeur par défaut est 0.0)

Double
Valeur renvoyée
Type de donnéesExplication
Geometry

An output geometry, moved by the specified distances along the x-, y-, and z-axes.

overlaps (second_geometry)
ParamètreExplicationType de données
second_geometry

A second geometry.

Object
Valeur renvoyée
Type de donnéesExplication
Boolean

Une valeur booléenne renvoyée True indique que l'intersection des deux géométries a la même dimension que l'une des géométries en entrée.

pointFromAngleAndDistance (angle, distance, {method})
ParamètreExplicationType de données
angle

The angle in degrees to the returned point.

Double
distance

The distance in the units of the geometry's spatial reference to the returned point.

Double
method

PLANAR measurements reflect the projection of geographic data onto the 2D surface (in other words, they will not take into account the curvature of the earth). GEODESIC, GREAT_ELLIPTIC, LOXODROME, or PRESERVE_SHAPE measurement types can be chosen as an alternative if desired.

  • GEODESICThe shortest line between any two points on the earth's surface on a spheroid (ellipsoid). One use for a geodesic line is when you want to determine the shortest distance between two cities for an airplane's flight path. This is also known as a great circle line if based on a sphere rather than an ellipsoid.
  • GREAT_ELLIPTICThe line on a spheroid (ellipsoid) defined by the intersection at the surface by a plane that passes through the center of the spheroid and the start and endpoints of a segment. This is also known as a great circle when a sphere is used.
  • LOXODROMEA loxodrome is not the shortest distance between two points but instead defines the line of constant bearing, or azimuth. Great circle routes are often broken into a series of loxodromes, which simplifies navigation. This is also known as a rhumb line.
  • PLANARPlanar measurements use 2D Cartesian mathematics to calculate lengths and areas. This option is only available when measuring in a projected coordinate system, and the 2D plane of that coordinate system will be used as the basis for the measurements.
  • PRESERVE_SHAPEThis type calculates the area or length of the geometry on the surface of the earth ellipsoid for geometry defined in a projected or geographic coordinate system. This option preserves the shape of the geometry in its coordinate system.

(La valeur par défaut est GEODESIC)

String
Valeur renvoyée
Type de donnéesExplication
PointGeometry

Returns a point at a given angle and distance in degrees and meters.

positionAlongLine (value, {use_percentage}, {geodesic})
ParamètreExplicationType de données
value

The distance along the line.

If the distance is less than zero, the starting point of the line will be returned; if the distance is greater than the length of the line, the endpoint of the line will be returned.

Double
use_percentage

Specifies whether the distance is specified as a fixed unit of measure or a ratio of the length of the line.

If True, value is used as a percentage; if False, value is used as a distance. For percentages, the value should be expressed as a double from 0.0 (0 percent) to 1.0 (100 percent).

(La valeur par défaut est False)

Boolean
geodesic

Specifies whether the distance measure is geodesic or planar. If True, the distance measure is treated as geodesic; if False, the distance measure is treated as planar.

(La valeur par défaut est False)

Boolean
Valeur renvoyée
Type de donnéesExplication
PointGeometry

The point on the line at a specified distance from the beginning of the line.

projectAs (spatial_reference, {transformation_name})
ParamètreExplicationType de données
spatial_reference

The spatial reference of the projected geometry. This can be a SpatialReference object or the coordinate system name.

SpatialReference
transformation_name

The geotransformation name.

With ArcGIS Pro, if you do not specify a transformation, none will be applied. With ArcGIS Server, if you do not specify a transformation, a fallback transformation will be applied.

String
Valeur renvoyée
Type de donnéesExplication
Object

The projected geometry.

scale ({origin}, {sx}, {sy}, {sz})
ParamètreExplicationType de données
origin

The origin of the transformation. The argument can be either an arcpy.Point object or an arcpy.PointGeometry object.

The default origin, arcpy.Point(0.0, 0.0, 0.0), will usually be located outside the target geometry.

(La valeur par défaut est arcpy.Point(0.0, 0.0, 0.0))

Point
sx

The factor that will be used to scale the geometry along the x-axis.

(La valeur par défaut est 1.0)

Double
sy

The factor that will be used to scale the geometry along the y-axis.

(La valeur par défaut est 1.0)

Double
sz

The factor that will be used to scale the geometry along the z-axis. The geometry must be z-aware and have z-values.

(La valeur par défaut est 1.0)

Double
Valeur renvoyée
Type de donnéesExplication
Geometry

An output geometry scaled from the specified origin and by specified factors along the x-, y-, and z-axes.

symmetricDifference (other)
ParamètreExplicationType de données
other

A second geometry.

Object
Valeur renvoyée
Type de donnéesExplication
Object

The resulting geometry.

touches (second_geometry)
ParamètreExplicationType de données
second_geometry

A second geometry.

Object
Valeur renvoyée
Type de donnéesExplication
Boolean

A return Boolean value of True indicates the boundaries of the geometries intersect.

union (other)
ParamètreExplicationType de données
other

A second geometry.

Object
Valeur renvoyée
Type de donnéesExplication
Object

The resulting geometry.

within (second_geometry, {relation})
ParamètreExplicationType de données
second_geometry

A second geometry.

Object
relation

The spatial relationship type.

  • BOUNDARY Relationship has no restrictions for interiors or boundaries.
  • CLEMENTINI Interiors of geometries must intersect. Specifying CLEMENTINI is equivalent to specifying None. This is the default.
  • PROPER Boundaries of geometries must not intersect.

(La valeur par défaut est None)

String
Valeur renvoyée
Type de donnéesExplication
Boolean

A return Boolean value of True indicates this geometry is contained within the second geometry.

Exemple de code

Polygon example

Create a polygon feature class from scratch.

import arcpy

# A list of features and coordinate pairs
feature_info = [[[1, 2], [2, 4], [3, 7]],
                [[6, 8], [5, 7], [7, 2], [9, 5]]]

# A list that will hold each of the Polygon objects
features = []

# Create Polygon objects based an the array of points
for feature in feature_info:
    array = arcpy.Array([arcpy.Point(*coords) for coords in feature])
   
    # Add the first coordinate pair to the end to close polygon
    array.append(array[0])
    features.append(arcpy.Polygon(array))

# Persist a copy of the geometry objects using CopyFeatures
arcpy.CopyFeatures_management(features, "c:/geometry/polygons.shp")

Rubriques connexes