Autocorrélation spatiale (Global Moran's I) (Statistiques spatiales)

Synthèse

Mesure l'auto-corrélation spatiale selon l'emplacement des entités et leurs valeurs attributaires à l'aide de la statistique de l'indice global de Moran.

Pour en savoir plus sur le fonctionnement de l'outil Autocorrélation spatiale (Global Moran's I)

Illustration

Illustration de l’outil Autocorrélation spatiale

Utilisation

  • L'outil d'auto-corrélation spatiale renvoie cinq valeurs : l'indice de Moran, l'indice attendu, la variance, le score z et la valeur p. Ces valeurs sont écrites sous forme de messages au bas de la fenêtre Géotraitement au cours de l'exécution de l'outil et transmises sous la forme de valeurs en sortie dérivées pour une utilisation éventuelle dans des modèles ou des scripts. Pour accéder aux messages, passez le curseur de la souris sur la barre d’avancement et cliquez sur le bouton de menu contextuel ou développez la section de détails des messages dans la fenêtre Geoprocessing (Géotraitement). Vous pouvez également consulter les messages, ainsi que les détails de l’exécution précédente d’un outil via l’historique de géotraitement. Vous pouvez créer un fichier de rapport HTML présentant un récapitulatif graphique des résultats avec cet outil. Le chemin d’accès au rapport est inclus avec les messages qui récapitulent les paramètres de l’outil. Cliquez sur ce chemin d’accès pour ouvrir le fichier de rapport.

  • Pour un ensemble d’entités et un attribut associé, cet outil évalue si le modèle exprimé est agrégé, dispersé ou aléatoire. Lorsque le score z ou la valeur p représente la signification statistique, un indice de Moran I positif indique une tendance à l’agrégation, alors qu’un indice de Moran négatif indique une tendance à la dispersion.

  • Cet outil calcule un score z et une valeur de p qui indiquent si les hypothèses nulles peuvent être rejetées. Dans ce cas, l’hypothèse nulle suppose que les valeurs des entités ne sont pas corrélées spatialement.

  • Le score z et la valeur p mesurent la signification statistique. Ces valeurs peuvent vous aider à déterminer s’il faut rejeter l’hypothèse nulle. Pour cet outil, l’hypothèse nulle suppose que les valeurs associées aux entités sont distribuées aléatoirement.

  • La valeur du paramètre Champ en entrée doit contenir différentes valeurs. Le calcul mathématique de cette statistique nécessite une variation de la variable analysée ; il ne peut pas aboutir si toutes les valeurs en entrée sont égales à 1, par exemple. Si vous souhaitez utiliser cet outil pour analyser le modèle spatial de données d’incident, vous devrez peut-être agréger les données d’incident. L’outil Analyse de points chauds optimisée peut également être utilisé pour analyser le modèle spatial de données d’incident.

    Remarque :

    Les données d’incidents sont des points représentant des événements (crime, accidents de la circulation) ou des objets (arbres, points de vente) où l’accent est mis sur la présence ou l’absence, plutôt que sur un attribut mesuré associé à chaque point.

  • Lorsque la valeur du paramètre Classe d’entités en entrée n’est pas projetée (c’est-à-dire, lorsque les coordonnées sont exprimées en degrés, minutes et secondes) ou que l’environnement du système de coordonnées en sortie est défini sur un système de coordonnées géographiques, les distances sont calculées à l’aide des mesures à la corde. Les mesures de distance à la corde sont utilisées, car elles sont rapides à calculer et produisent des évaluations fiables des distances géodésiques réelles, du moins pour les points se trouvant à environ 30 degrés les uns des autres. Les distances de corde reposent sur un sphéroïde aplati. Si l’on prend deux points quelconques sur la surface de la Terre, la distance à la corde qui les sépare est la longueur d’une ligne qui traverse la Terre en trois dimensions pour relier ces deux points. Les distances à la corde sont exprimées en mètres.

    Attention :

    Veillez à projeter les données si votre zone d’étude s’étend au-delà de 30 degrés. Les distances à la corde ne constituent pas une bonne estimation des distance géodésiques au-delà de 30 degrés.

  • Lorsque vous utilisez des distances à la corde dans l’analyse, la valeur du paramètre Bande de distance ou distance seuil, s’il est spécifié, doit être exprimé en mètres.

  • Pour les entités linéaires et surfaciques, les centroïdes d’entité sont utilisés dans les calculs de distance. Pour les multi-points, les polylignes ou les polygones comprenant plusieurs parties, le centroïde est calculé à l’aide du centre moyen pondéré de toutes les parties d’entité. La pondération pour les entités ponctuelles est de 1 ; pour les entités linéaires, elle correspond à la longueur et pour les entités surfaciques, à la superficie.

  • La valeur du paramètre Conceptualization of Spatial Relationships (Conceptualisation de relations spatiales) doit refléter les relations inhérentes entre les entités que vous analysez. Plus la modélisation des interactions entre les entités dans l’espace est réaliste, plus les résultats sont précis. Des recommandations sont présentées dans la section Pratiques recommandées pour sélectionner une conceptualisation de relations spatiales. Voici quelques conseils supplémentaires :

    • Lorsque l'option Canal de distance constante est utilisée, la valeur par défaut du paramètre Canal distance ou distance seuil permet de s’assurer que chaque entité possède au moins un voisin. Bien qu’importante, il arrive souvent que cette valeur par défaut ne soit pas la distance la plus appropriée pour une analyse. Reportez-vous à la rubrique Canal distance (sphère d’influence) pour connaître les stratégies permettant de sélectionner une échelle appropriée (canal de distance) pour une analyse.

    • Lorsque l'option Inverse de la distance ou Inverse de la distance au carré est utilisée, lorsqu'une valeur égale à zéro est entrée pour le paramètre Canal distance ou distance seuil, toutes les entités sont considérées voisines de toutes les autres entités ; si aucune valeur n'est spécifiée pour ce paramètre, la distance par défaut est appliquée.

      Les pondérations pour les distances inférieures à 1 deviennent instables lorsqu’elles sont inversées. Par conséquent, la pondération d'entités séparées par moins d'une unité de distance se voit affecter la valeur 1.

      Pour les options d’inversion de la distance (Inverse distance (Inverse de la distance), Inverse distance squared (Inverse de la distance au carré) et Zone of indifference (Zone d’indifférence)), toute paire de points coïncidents se voit affecter une pondération de 1 pour éviter une division par zéro. Ceci garantit qu’aucune entité n’est exclue de l’analyse.

  • Dans Python, la sortie dérivée de cet outil contient la valeur d’indice de Moran I, le score z, la valeur p, un fichier de rapport HTML ainsi que les entités en entrée. Par exemple, si vous attribuez l’objet Result de l’outil à une variable nommée MoranResult, MoranResult[0] stocke la valeur d’indice de Moran I, MoranResult[1] stocke le score z, MoranResult[2] stocke la valeur p, MoranResult[3] stocke le chemin d’accès au fichier de rapport HTML et MoranResult[4] stocke l’entrée. Si vous ne générez pas de fichier de rapport HTML à l’aide du paramètre Générer le rapport, la quatrième sortie dérivée sera une chaîne vide.

  • Des options supplémentaires pour le paramètre Conceptualisation de relations spatiales (y compris les relations en trois dimensions et spatio-temporelles) sont proposées par l’outil Générer la matrice de pondérations spatiales. Pour utiliser ces options, créez un fichier de matrice de pondérations spatiales avant l’analyse ; Utilisez Extraire les pondérations spatiales à partir du fichier comme valeur du paramètre Conceptualisation de relations spatiales ; enfin, pour le paramètre Fichier de matrice de pondérations, spécifiez le chemin d’accès au fichier de pondérations spatiales que vous avez créé.

  • Les couches de carte peuvent être spécifiées en tant que valeur du paramètre Classe d’entités en entrée. Lorsque vous utilisez une couche avec une sélection, seules les entités sélectionnées sont comprises dans l’analyse.

  • Si vous renseignez une valeur pour le paramètre Fichier de matrice de pondérations portant une extension .swm, un fichier de matrice de pondérations spatiales créé à l’aide de l’outil Générer la matrice de pondérations spatiales est attendu. Dans le cas contraire, un fichier de matrice de pondérations spatiales au format ASCII est attendu. Dans certains cas, le comportement diffère selon le type de fichier de matrice de pondérations spatiales utilisé :

    • Fichier ASCII de matrice de pondérations spatiales
      • Les pondérations seront utilisées en l’état. Les relations d’entité à entité manquantes seront considérées comme nulles.
      • Si les pondérations sont standardisées par lignes, les résultats des analyses réalisées sur les ensembles de sélection peuvent être incorrects. Pour exécuter une analyse sur un ensemble de sélection, convertissez le fichier ASCII de pondérations spatiales en fichier .swm. Pour ce faire, lisez les données ASCII dans une table et utilisez l’option Convertir la table de l’outil Générer la matrice de pondérations spatiales.
    • Fichier SWM de matrice de pondérations spatiales
      • Si les pondérations sont standardisées par lignes, elles seront standardisées à nouveau pour les ensembles de sélection. Dans le cas contraire, les pondérations seront utilisées en l’état.

  • L’exécution de l’analyse avec un fichier de matrice de pondérations spatiales au format ASCII exige beaucoup de mémoire. Pour les analyses portant sur plus de 5 000 entités, envisagez de convertir le fichier ASCII de matrice de pondérations spatiales en fichier au format SWM. En premier lieu, placez les pondérations ASCII dans une table avec mise en forme (à l’aide d’Excel, par exemple). Exécutez ensuite l’outil Générer la matrice de pondérations spatiales en utilisant l’option Convertir la table comme valeur du paramètre Conceptualisation de relations spatiales. La sortie sera un fichier SWM de matrice de pondérations spatiales.

  • Remarque :

    Vous risquez de manquer de mémoire lors de l’exécution de cet outil. Ceci se produit lorsque les valeurs des paramètres Conceptualisation de relations spatiales et Bande de distance ou distance seuil spécifiées résultent en une multitude de voisins par entité. En règle générale, ne définissez pas les relations spatiales de sorte que chaque entité ait des milliers de voisins. Toutes les entités devraient avoir au moins un voisin et presque toutes les entités avoir au moins huit voisins.

  • Pour les entités surfaciques, utilisez l’option Ligne pour le paramètre Standardisation. La Standardisation par lignes limite les représentations incorrectes lorsque le nombre de voisins que chaque entité possède est une fonction du schéma d’agrégation ou du processus d’échantillonnage, au lieu de refléter la répartition spatiale réelle de la variable que vous analysez.

  • Pour plus d’informations sur les paramètres de cet outil, consultez la rubrique d’aide Modélisation des relations spatiales.

  • Attention :

    Les fichiers de formes ne peuvent pas stocker de valeurs nulles. Il se peut que des outils ou d’autres procédures qui créent des fichiers de formes à partir d’autres types d’entrées stockent ou interprètent des valeurs nulles comme étant égales à zéro. Dans certains cas, les valeurs nulles sont stockées sous forme de valeurs négatives élevées dans les fichiers de formes, ce qui peut générer des résultats inattendus. Reportez-vous à la rubrique Remarques concernant le géotraitement pour la sortie de fichiers de formes pour plus d’informations.

Paramètres

ÉtiquetteExplicationType de données
Classe d’entités en entrée

Classe d'entités pour laquelle l'autocorrélation spatiale est calculée.

Feature Layer
Champ en entrée

Champ numérique utilisé pour évaluer l’autocorrélation spatiale.

Field
Générer le rapport
(Facultatif)

Spécifie si l’outil créera un récapitulatif graphique des résultats sous forme de fichier .html.

  • Sélectionné : un récapitulatif graphique sera créé.
  • Non cochée - Aucun récapitulatif graphique n’est créé. Il s’agit de l’option par défaut.
Boolean
Conceptualisation des relations spatiales

Indique comment les relations spatiales seront définies parmi les entités.

  • Inverse de la distanceLes entités voisines proches influencent plus fortement les calculs d'une entité cible que les entités qui sont éloignées.
  • Inverse de la distance au carréCeci est identique à l'option Inverse de la distance, à la différence que la pente est plus prononcée et que l'influence chute donc plus rapidement. De plus, seuls les voisins les plus proches d'une entité cible exercent une influence notable sur les calculs de cette entité.
  • Canal de distance constanteChaque entité est analysée dans le contexte des entités voisines. Les entités voisines situées dans la distance critique spécifiée (valeur Distance Band or Threshold Distance [Canal distance ou distance seuil] reçoivent une pondération de 1 et exercent une influence sur les calculs de l’entité cible. Les entités voisines situées au-delà de la distance critique reçoivent une pondération de zéro et n'exercent aucune influence sur les calculs de l'entité cible.
  • Zone d'indifférenceLes entités se trouvant dans la distance critique spécifiée (valeur Canal distance ou distance seuil) d'une entité cible reçoivent une pondération de 1 et exercent une influence sur les calculs de cette entité. Une fois la distance critique dépassée, les pondérations (et l'influence exercée par une entité voisine sur les calculs d'une entité cible) diminuent avec la distance.
  • K voisins les plus prochesLes k entités les plus proches sont incluses dans l’analyse. Le nombre de voisins (k) à inclure dans l’analyse est défini par le paramètre Number of Neighbors (Nombre de voisins).
  • Segments de contiguïté uniquementSeules les entités surfaciques voisines qui partagent une limite ou se chevauchent influencent les calculs de l'entité surfacique cible.
  • Angles des segments de contiguïtéLes entités surfaciques voisines qui partagent une limite, un nœud, ou qui se chevauchent influencent les calculs de l'entité surfacique cible.
  • Extraire les pondérations spatiales à partir du fichierLes relations spatiales sont définies par un fichier de pondérations spatiales spécifié. Le chemin d'accès au fichier de pondérations spatiales est donné par le paramètre Fichier de matrice des pondérations.
String
Méthode de distance

Spécifie le mode de calcul des distances de chaque entité avec les entités voisines.

  • EuclidienLa distance en ligne droite entre deux points (distance à vol d’oiseau) sera utilisée. Il s’agit de l’option par défaut.
  • ManhattanLa distance entre deux points mesurée le long d’axes à angles droits (îlot urbain) sera utilisée. Le calcul s’effectue en faisant la somme de la différence (absolue) entre les coordonnées x et y
String
Standardisation

Indique si la standardisation des pondérations spatiales sera appliquée. La standardisation par lignes est recommandée chaque fois que la distribution des entités est potentiellement influencée par la conception de l’échantillonnage ou par une structure d’agrégation imposée.

  • AucunAucune standardisation des pondérations spatiales n’est appliquée.
  • LigneLes pondérations spatiales seront standardisées ; chaque pondération sera divisée par la somme des lignes (la somme des pondérations de toutes les entités voisines). Il s’agit de l’option par défaut.
String
Canal distance ou distance seuil
(Facultatif)

Distance limite pour les options d’inverse de la distance et de distance fixe. Les entités se trouvant à l'extérieur de la limite spécifiée pour une entité cible ne sont pas prises en compte dans les analyses pour cette entité. Cependant, pour Zone d'indifférence, l'influence des entités situées hors de la distance donnée est réduite avec la distance, tandis que les entités se trouvant dans le seuil de distance sont considérées à part égale. La valeur de distance renseignée doit être identique à celle du système de coordonnées en sortie.

Pour les conceptualisations d’inverse de la distance des relations spatiales, une valeur de 0 indique qu’aucune distance de seuil n’est appliquée ; lorsque ce paramètre n’est pas défini, une valeur de seuil par défaut est calculée et appliquée. Cette valeur par défaut est la distance euclidienne qui permet de s’assurer que chaque entité possède au moins un voisin.

Ce paramètre n’a aucun effet lorsque la conceptualisation spatiale de contiguïté polygonale (Tronçons de contiguïté uniquement ou Angles des tronçons de contiguïté) ou Extraire les pondérations spatiales à partir du fichier est sélectionnée.

Double
Fichier de matrice de pondérations
(Facultatif)

Chemin d’accès à un fichier contenant des pondérations qui définissent les relations spatiales, et potentiellement les relations temporelles, entre des entités.

File
Nombre de voisins
(Facultatif)

Nombre entier spécifiant le nombre de voisins qui seront inclus dans l’analyse.

Long

Sortie obtenue

ÉtiquetteExplicationType de données
Index

Valeur de l’index Moran.

Double
ZScore

Le score z.

Double
PValue

La valeur p.

Double
Fichier de rapport

Un fichier HTML avec un résumé graphique des résultats.

File
Jeu de données en entrée dérivé

Entités en entrée de l’outil

Feature Layer

arcpy.stats.SpatialAutocorrelation(Input_Feature_Class, Input_Field, {Generate_Report}, Conceptualization_of_Spatial_Relationships, Distance_Method, Standardization, {Distance_Band_or_Threshold_Distance}, {Weights_Matrix_File}, {number_of_neighbors})
NomExplicationType de données
Input_Feature_Class

Classe d'entités pour laquelle l'autocorrélation spatiale est calculée.

Feature Layer
Input_Field

Champ numérique utilisé pour évaluer l’autocorrélation spatiale.

Field
Generate_Report
(Facultatif)

Spécifie si l’outil créera un récapitulatif graphique des résultats sous forme de fichier .html.

  • NO_REPORTAucun récapitulatif graphique n’est créé. Il s’agit de l’option par défaut.
  • GENERATE_REPORTUn récapitulatif graphique sera créé.
Boolean
Conceptualization_of_Spatial_Relationships

Indique comment les relations spatiales seront définies parmi les entités.

  • INVERSE_DISTANCELes entités voisines proches influencent plus fortement les calculs d'une entité cible que les entités qui sont éloignées.
  • INVERSE_DISTANCE_SQUAREDCeci est identique à l’option INVERSE_DISTANCE, à la différence que la pente est plus prononcée et que l’influence chute donc plus rapidement. De plus, seuls les voisins les plus proches d’une entité cible exercent une influence notable sur les calculs de cette entité.
  • FIXED_DISTANCE_BANDChaque entité est analysée dans le contexte des entités voisines. Les entités voisines comprises dans la distance critique spécifiée (valeur Distance_Band_or_Threshold) reçoivent une pondération de 1 et exercent une influence sur les calculs de l’entité cible. Les entités voisines situées au-delà de la distance critique reçoivent une pondération de zéro et n'exercent aucune influence sur les calculs de l'entité cible.
  • ZONE_OF_INDIFFERENCELes entités se trouvant dans la distance critique spécifiée (valeur Distance_Band_or_Threshold) d’une entité cible reçoivent une pondération de 1 et exercent une influence sur les calculs de cette entité. Une fois la distance critique dépassée, les pondérations (et l'influence exercée par une entité voisine sur les calculs d'une entité cible) diminuent avec la distance.
  • K_NEAREST_NEIGHBORSLes k entités les plus proches sont incluses dans l’analyse. Le nombre de voisins (k) à inclure dans l’analyse est défini par le paramètre number_of_neighbors.
  • CONTIGUITY_EDGES_ONLYSeules les entités surfaciques voisines qui partagent une limite ou se chevauchent influencent les calculs de l'entité surfacique cible.
  • CONTIGUITY_EDGES_CORNERSLes entités surfaciques voisines qui partagent une limite, un nœud, ou qui se chevauchent influencent les calculs de l'entité surfacique cible.
  • GET_SPATIAL_WEIGHTS_FROM_FILELes relations spatiales sont définies par un fichier de pondérations spatiales spécifié. Le chemin d’accès au fichier de pondérations spatiales est donné par le paramètre Weights_Matrix_File.
String
Distance_Method

Spécifie le mode de calcul des distances de chaque entité avec les entités voisines.

  • EUCLIDEAN_DISTANCELa distance en ligne droite entre deux points (distance à vol d’oiseau) sera utilisée. Il s’agit de l’option par défaut.
  • MANHATTAN_DISTANCELa distance entre deux points mesurée le long d’axes à angles droits (îlot urbain) sera utilisée. Le calcul s’effectue en faisant la somme de la différence (absolue) entre les coordonnées x et y
String
Standardization

Indique si la standardisation des pondérations spatiales sera appliquée. La standardisation par lignes est recommandée chaque fois que la distribution des entités est potentiellement influencée par la conception de l’échantillonnage ou par une structure d’agrégation imposée.

  • NONEAucune standardisation des pondérations spatiales n’est appliquée.
  • ROWLes pondérations spatiales seront standardisées ; chaque pondération sera divisée par la somme des lignes (la somme des pondérations de toutes les entités voisines). Il s’agit de l’option par défaut.
String
Distance_Band_or_Threshold_Distance
(Facultatif)

Distance limite pour les options d’inverse de la distance et de distance fixe. Les entités se trouvant à l'extérieur de la limite spécifiée pour une entité cible ne sont pas prises en compte dans les analyses pour cette entité. Cependant, pour ZONE_OF_INDIFFERENCE, l’influence des entités situées hors de la distance donnée est réduite avec la distance, tandis que les entités se trouvant dans le seuil de distance sont considérées à part égale. La valeur de distance renseignée doit être identique à celle du système de coordonnées en sortie.

Pour les conceptualisations d’inverse de la distance des relations spatiales, une valeur de 0 indique qu’aucune distance de seuil n’est appliquée ; lorsque ce paramètre n’est pas défini, une valeur de seuil par défaut est calculée et appliquée. La valeur par défaut est la distance euclidienne qui permet de s’assurer que chaque entité possède au moins un voisin.

Ce paramètre n’a aucun effet lorsque la conceptualisation spatiale de contiguïté polygonale (CONTIGUITY_EDGES_ONLY ou CONTIGUITY_EDGES_CORNERS) ou GET_SPATIAL_WEIGHTS_FROM_FILE est sélectionnée.

Double
Weights_Matrix_File
(Facultatif)

Chemin d’accès à un fichier contenant des pondérations qui définissent les relations spatiales, et potentiellement les relations temporelles, entre des entités.

File
number_of_neighbors
(Facultatif)

Nombre entier spécifiant le nombre de voisins qui seront inclus dans l’analyse.

Long

Sortie obtenue

NomExplicationType de données
Index

Valeur de l’index Moran.

Double
ZScore

Le score z.

Double
PValue

La valeur p.

Double
Report_File

Un fichier HTML avec un résumé graphique des résultats.

File
Derived_Input_Dataset

Entités en entrée de l’outil

Feature Layer

Exemple de code

Exemple 1 d’utilisation de l’outil SpatialAutocorrelation (fenêtre Python)

Le script ci-dessous pour la fenêtre Python illustre l’utilisation de la fonction SpatialAutocorrelation.

import arcpy
arcpy.env.workspace = r"c:\data"
arcpy.stats.SpatialAutocorrelation("olsResults.shp", "Residual", "NO_REPORT", 
                                   "GET_SPATIAL_WEIGHTS_FROM_FILE", "EUCLIDEAN DISTANCE", 
                                   "NONE", "#", "euclidean6Neighs.swm")
Exemple 2 d’utilisation de l’outil SpatialAutocorrelation (script autonome)

Le script autonome Python ci-dessous illustre l’utilisation de la fonction SpatialAutocorrelation.

# Analyze the growth of regional per capita incomes in U.S.
# Counties from 1969 -- 2002 using Ordinary Least Squares Regression

# Import system modules
import arcpy

# Set property to overwrite existing outputs
arcpy.env.overwriteOutput = True

# Local variables...
workspace = r"C:\Data"

try:
    # Set the current workspace (to avoid having to specify the full path to the feature classes each time)
    arcpy.env.workspace = workspace

    # Growth as a function of {log of starting income, dummy for South
    # counties, interaction term for South counties, population density}
    # Process: Ordinary Least Squares... 
    ols = arcpy.stats.OrdinaryLeastSquares("USCounties.shp", "MYID", 
                        "olsResults.shp", "GROWTH",
                        "LOGPCR69;SOUTH;LPCR_SOUTH;PopDen69",
                        "olsCoefTab.dbf",
                        "olsDiagTab.dbf")

    # Create Spatial Weights Matrix (can be based on input or output FC)
    # Process: Generate Spatial Weights Matrix... 
    swm = arcpy.stats.GenerateSpatialWeightsMatrix("USCounties.shp", "MYID",
                        "euclidean6Neighs.swm",
                        "K_NEAREST_NEIGHBORS",
                        "#", "#", "#", 6) 
                        

    # Calculate Moran's I Index of Spatial Autocorrelation for 
    # OLS Residuals using a SWM File.  
    # Process: Spatial Autocorrelation (Morans I)...      
    moransI = arcpy.stats.SpatialAutocorrelation("olsResults.shp", "Residual",
                        "NO_REPORT", "GET_SPATIAL_WEIGHTS_FROM_FILE", 
                        "EUCLIDEAN_DISTANCE", "NONE", "#", 
                        "euclidean6Neighs.swm")

except:
    # If an error occurred when running the tool, print the error message.
    print(arcpy.GetMessages())

Environnements

Cas particuliers

Système de coordonnées en sortie

La géométrie de l'entité est projetée au système de coordonnées en sortie avant l'analyse. Tous les calculs mathématiques sont basés sur la référence spatiale du système de coordonnées en sortie. Lorsque le système de coordonnées en sortie est exprimé en degrés, minutes et secondes, les distances géodésiques sont estimées à l'aide de distances à la corde.

Informations de licence

  • Basic: Oui
  • Standard: Oui
  • Advanced: Oui

Rubriques connexes