CCDC を使用した変更の解析 (Analyze Changes Using CCDC) (Image Analyst)

Image Analyst ライセンスで利用できます。

概要

CCDC (Continuous Change Detection and Classification) 法を使用してピクセル値の経時的な変化を評価し、モデル結果を含む多次元ラスターを生成します。

[CCDC を使用した変更の解析 (Analyze Changes Using CCDC)] ツールの詳細

使用法

  • CCDC (Continuous Change Detection and Classification) アルゴリズムは、ピクセル値の経時的な変化を識別する手法です。本来、マルチバンドの Landsat 画像の時系列のために開発された手法であり、変化を検出して変化が起きた前後の土地被膜を分類するために使用されます。このツールは、サポートされているセンサーからの画像に使用でき、シングル バンド ラスターにおける変化を検出するために使用することもできます。たとえば、このツールを使って、NDVI ラスターの時系列における変化を検出して森林破壊イベントを特定できます。

  • 入力多次元ラスター レイヤーには、少なくとも 1 年間にわたって 12 個以上のスライスが必要です。

  • このツールを実行する前に QA バンドを使用して、雲と雲の影のマスクを削除することをお勧めします。

  • 出力変更解析ラスターで計算された変化を調べるには、時系列プロファイル チャートを作成します。変更解析ラスターでさまざまな場所のグラフを生成して、いつ変更が発生したかを表示します。ピクセルが変化すると、グラフはピクセル値の高調和回帰モデルが時間とともに新しいモデルに変化したモデルでブレークを表示して、変化を示します。グラフ上のポイントにポインターを合わせると、モデルが変化した日を確認できます。

  • 出力変更解析ラスターは、各スライスが時系列モデル係数、RMSE (二乗平均平方根誤差)、および観察された変化で構成される多次元ラスターです。出力内のスライス数は、入力内のスライス数と一致します。各ピクセルの変更情報を含むラスターを生成する [変更解析ラスターから変更を検出 (Detect Change Using Change Analysis Raster)] ツールへの入力として使用できます。

  • 出力変更解析ラスターを分類に使用することもできます。このツールを実行して、変更解析ラスターを生成します。サンプルが土地被膜を表す時刻を示す時間フィールドを有するトレーニング サンプルを作成します。次に、このツールを実行して、分類器定義ファイル (*.ecd) を生成します。最後に、*.ecd ファイルと変更解析ラスターを入力として使用して [ラスターの分類 (Classify Raster)] ツールを実行し、多次元分類ラスターを生成します。

  • [時間マスキングのバンド] パラメーターは、雲、雲の影、および雪のマスクに使用するバンドを指定します。短波赤外 (SWIR) バンドでは雲の影と雪は非常に暗く表示され、緑バンドでは雲と雪が非常に明るくなるため、SWIR バンドと緑バンドのバンド インデックスをマスクすることをお勧めします。

  • [更新フィッティング頻度 (年)] パラメーターは、時系列モデルを新しい観測データで更新する頻度を定義します。モデルを頻繁に更新すると、処理コストが高く、メリットがわずかになります。たとえば、多次元ラスターでスライスが 365 個ある、または年に一度観測データを削除する場合、観測データごとに更新が行われるとすると、その処理は年に一度の更新に比べて 365 倍の時間がかかりますが、精度は高くなりません。

  • このツールの実行には時間がかかる可能性があり、結果の保存にかなり多くのディスク容量を必要とします。処理時間を短縮し、ストレージ容量を削減するために、以下の手順を実行することをお勧めします。

    • ピラミッド型環境をオフにします。[環境] ウィンドウの [ピラミッド構築] ボックスをオフにして、Python で環境を NONE に設定します。
    • [圧縮] 環境を [LERC] に設定し、[最大値エラー] を 0.000001 に設定します。
    • このツールの出力に対して [変更解析ラスターから変更を検出 (Detect Change Using Change Analysis Raster)] ツールを何度も実行する場合には、結果に対して多次元転置を構築することをお勧めします。

  • このツールは、多次元ラスター データセットを CRF (Cloud Raster Format) で生成します。現在、他の出力形式はサポートされていません。

構文

AnalyzeChangesUsingCCDC(in_multidimensional_raster, {bands}, {tmask_bands}, {chi_squared_threshold}, {min_anomaly_observations}, {update_frequency})
パラメーター説明データ タイプ
in_multidimensional_raster

入力多次元ラスター データセット。

Raster Dataset; Raster Layer; Mosaic Dataset; Mosaic Layer; Image Service
bands
[bands,...]
(オプション)

変更の検出に使用するバンド ID。バンド ID を指定しない場合、入力ラスター データセットのすべてのバンドが使用されます。

Long
tmask_bands
[tmask_bands,...]
(オプション)

時間マスク (Tmask) で使用されるバンド ID。緑バンドと SWIR バンドを使用することをお勧めします。バンド ID を指定しない場合、マスキングは実行されません。

Long
chi_squared_threshold
(オプション)

カイ二乗統計変更確率閾値。観測データに含まれている計算された変更確率がこの閾値を超えている場合、異常としてフラグが付けられ、変更イベントの可能性があります。デフォルト値は 0.99 です。

Double
min_anomaly_observations
(オプション)

イベントが変更と見なされる前に発生する連続異常観測の最小数です。ピクセルは、変更と見なされる前に、指定した数の連続するタイム スライスに対して、異常としてフラグを付けられる必要があります。デフォルト値は 6 です。

Long
update_frequency
(オプション)

時系列モデルを新しい観測データで更新する頻度 (年)。デフォルト値は 1 です。

Double

戻り値

名前説明データ タイプ
out_ccdc_result

出力される CRF (Cloud Raster Format) 多次元ラスター データセット。

CCDC 解析のモデル情報を含む出力変更解析ラスター。

Raster

コードのサンプル

AnalyzeChangesUsingCCDC (CCDC を使用した変更の解析) の例 1 (Python ウィンドウ)

この例では、30 年間の月次 NDVI ラスターで連続的な変更の検出を実行します。変更検出に使用されるバンドは 1 つだけで、カイ二乗確率閾値は 0.90 です。

# Import system modules
import arcpy
from arcpy.ia import *

# Check out the ArcGIS Image Analyst extension license
arcpy.CheckOutExtension("ImageAnalyst")


changeAnalysisRaster = arcpy.ia.AnalyzeChangesUsingCCDC(
	"Monthly_NDVI_30_years.crf", [0], [], 0.90, 6, 1); 

# Save output
changeAnalysisRaster.save(r"C:\data\NDVI_ChangeAnalysis.crf")
AnalyzeChangesUsingCCDC (CCDC を使用した変更の解析) の例 2 (スタンドアロン スクリプト)

この例では、7 つの Landsat 画像の時系列で、雪、雲、および雲の影のマスクにバンド 3 および 7 (2 と 6 にインデックス化) を使用して連続的な変更の検出を実行します。

# Import system modules
import arcpy
from arcpy.ia import *

# Check out the ArcGIS Image Analyst extension license
arcpy.CheckOutExtension("ImageAnalyst")

# Define input parameters
in_multidimensional = r"C:\data\Landsat_time_series.crf"
change_bands = [0,1,2,3,4,5,6]
tmask_bands = [2,6]
chi_sq_threshold = 0.99
min_consecutive_observations = 3
update_frequency = 1

# Execute
changeAnalysisRaster = arcpy.ia.AnalyzeChangesUsingCCDC(
	in_multidimensional, change_bands, tmask_bands, chi_sq_threshold, 
	min_consecutive_observations, update_frequency) 

# Save output
changeAnalysisRaster.save(r"C:\data\Landsat_ChangeAnalysis.crf")

ライセンス情報

  • Basic: 次のものが必要 Image Analyst
  • Standard: 次のものが必要 Image Analyst
  • Advanced: 次のものが必要 Image Analyst

関連トピック