ラベル | 説明 | データ タイプ |
入力時空間キューブ
| 将来の時間ステップについて予測する変数を含む netCDF キューブ。このファイルは、*.nc ファイル拡張子が付加され、[ポイントの集約による時空間キューブの作成 (Create Space Time Cube By Aggregating Points)] ツール、[定義済みの場所から時空間キューブを作成 (Create Space Time Cube From Defined Locations)] ツール、または [多次元ラスター レイヤーから時空間キューブを作成 (Create Space Time Cube from Multidimensional Raster Layer)] ツールで作成されている必要があります。 | File |
分析変数
| 将来の時間ステップについて予測される、netCDF ファイル内の数値変数。 | String |
出力フィーチャ
| 時空間キューブ内のすべての位置の出力フィーチャクラスで、予測される値がフィールドとして格納されます。レイヤーには最終的な時間ステップの予測が表示され、時系列と、各場所の予測を示すポップアップ チャートが含まれます。 | Feature Class |
出力時空間キューブ
(オプション) | 入力時空間キューブの値を含み、予測された時間ステップが追加された、新しい時空間キューブ (*.nc ファイル)。[時空間キューブを 3D で視覚化 (Visualize Space Time Cube in 3D)] ツールを使用して、観測および予測されたすべての値を同時に参照できます。 | File |
予測する時間ステップ数
(オプション) | 予測する時間ステップ数を指定する正の整数。この値は、入力時空間キューブの合計時間ステップ数の 50% より大きくできません。デフォルト値は 1 時間ステップです。 | Long |
曲線タイプ
(オプション) | 入力時空間キューブの値を予測するため使用される「曲線タイプ」を指定します。
| String |
検証から除外する時間ステップ数
(オプション) | 各時系列の最後で、検証のため除外する時間ステップ数。デフォルト値は入力時間ステップ数の 10% (端数切り捨て) で、この値は時間ステップ数の 25% より大きくできません。値 0 を指定すると、時間ステップは一切除外されません。 | Long |
外れ値オプション
(オプション) | 統計的に有意な時系列外れ値が特定されるかどうかを指定します。
| String |
信頼度 (オプション) | 時系列外れ値のテストの信頼度を指定します。
| String |
外れ値の最大数
| 各場所で外れ値を宣言できる時間ステップの最大数。デフォルト値は、入力時空間キューブの時間ステップ数の 5 パーセント (端数切り捨て) に相当します (1 以上の値が必ず使用されます)。この値は、時間ステップ数の 20 パーセントを超えることはできません。 | Long |
サマリー
カーブ フィットを使用して時空間キューブの各場所における値を予測します。
このツールは、[入力時空間キューブ] パラメーターの各場所にパラメーター曲線をフィッティングし、その曲線を将来の時間ステップに延長して外挿することで、時系列を予測します。カーブは、線形、放物線、S 字型 (ゴンペルツ)、または指数のいずれかです。時空間キューブの各位置で同じ曲線タイプを使用することも、各位置に最も合う曲線タイプをツールによって設定することもできます。
図
使用法
このツールでは、[ポイントの集約による時空間キューブの作成 (Create Space Time Cube By Aggregating Points)] ツール、[定義済みのフィーチャから時空間キューブを作成 (Create Space Time Cube From Defined Features)] ツール、および [多次元ラスター レイヤーから時空間キューブを作成 (Create Space Time Cube from Multidimensional Raster Layer)] ツールによって作成された netCDF ファイルを使用できます。
時系列予測 (Time Series Forecasting) ツールセットの他の予測ツールと比べて、このツールは最も単純明快で、強い季節性が示されない予測可能な動向に従う時系列に最適です。データが複雑な動向に従う、または強い季節性サイクルが示されている場合は、他の予測ツールを使用してください。
[位置による予測評価 (Evaluate Forecasts By Location)] ツールを使用して、予測される複数の時空間キューブを比較およびマージできます。これによって、別々の予測ツールやパラメーターを使用して複数の予測キューブを作成し、予測 RMSE (二乗平均平方根誤差) または検証 RMSE を使用して場所ごとに最適な予測をツールで判定できます。
[入力時空間キューブ] パラメーターの各位置について、ツールは異なる目的に対応するよう 2 つのモデルを構築します。
- 予測モデル - このモデルは、曲線を時系列の値に当てはめ、将来の時間ステップに曲線を延長して外挿し、時空間キューブの値を予測するために使用されます。予測モデルが時空間キューブの値にどの程度適合しているかは、予測 RMSE 値により測定されます。
- 検証モデル - このモデルは、予測モデルを検証し、値をどの程度正確に予測できるかをテストするために使用されます。[検証から除外する時間ステップ数] パラメーターに 0 より大きい数値が指定された場合、このモデルは含められた時間ステップに当てはめられ、除外された時間ステップの値の予測に使用されます。これにより、選択した種類の曲線が値をどれだけ的確に予測できるかを確認できます。予測される値が除外された値とどの程度適合しているかは、検証 RMSE 値により測定されます。
[曲線タイプ] パラメーターの [自動検出] オプションは、それぞれの場所に 4 種類の曲線を当てはめ、検証 RMSE の最も小さいものを特定します。検証で時間ステップが除外されていない場合、予測 RMSE が最も小さい曲線が使用されます。
[出力フィーチャ] パラメーター値は [コンテンツ] ウィンドウに追加され、最終的に予測された時間ステップに基づいてレンダリングされます。
-
このツールは、予測結果の理解と視覚化に役立つよう、ジオプロセシング メッセージとポップアップ チャートを作成します。このメッセージには、時空間キューブの構造についての情報と、RMSE 値の統計の要約が含まれています。マップ操作 ナビゲーション ツールを使用してフィーチャをクリックすると、[ポップアップ] ウィンドウに時空間キューブの値、予測に使用された曲線、その場所について予測される値が表示されます。
[外れ値オプション] パラメーターを使用して、各場所における時系列値の統計的に有意な外れ値を検出できます。
検証のとき、どの程度の時間ステップを除外するかは重要な選択です。除外する時間ステップを増やすと、検証モデルを推定する時間ステップが少なくなってしまいます。ただし、除外する時間ステップが少なすぎると、検証 RMSE は少量のデータを使用して推定されることになり、誤解を招きやすくなります。検証モデルの評価に十分な時間ステップを維持しながら、できる限り多くの時間ステップを除外することをお勧めします。また、時空間キューブに十分な時間ステップが存在するなら、最低でも予測に使用する時間ステップと同じ数の時間ステップを検証用に保持することをお勧めします。
パラメーター
arcpy.stpm.CurveFitForecast(in_cube, analysis_variable, output_features, {output_cube}, {number_of_time_steps_to_forecast}, {curve_type}, {number_for_validation}, {outlier_option}, {level_of_confidence}, maximum_number_of_outliers)
名前 | 説明 | データ タイプ |
in_cube | 将来の時間ステップについて予測する変数を含む netCDF キューブ。このファイルは、*.nc ファイル拡張子が付加され、[ポイントの集約による時空間キューブの作成 (Create Space Time Cube By Aggregating Points)] ツール、[定義済みの場所から時空間キューブを作成 (Create Space Time Cube From Defined Locations)] ツール、または [多次元ラスター レイヤーから時空間キューブを作成 (Create Space Time Cube from Multidimensional Raster Layer)] ツールで作成されている必要があります。 | File |
analysis_variable | 将来の時間ステップについて予測される、netCDF ファイル内の数値変数。 | String |
output_features | 時空間キューブ内のすべての位置の出力フィーチャクラスで、予測される値がフィールドとして格納されます。レイヤーには最終的な時間ステップの予測が表示され、時系列と、各場所の予測を示すポップアップ チャートが含まれます。 | Feature Class |
output_cube (オプション) | 入力時空間キューブの値を含み、予測された時間ステップが追加された、新しい時空間キューブ (*.nc ファイル)。[時空間キューブを 3D で視覚化 (Visualize Space Time Cube in 3D)] ツールを使用して、観測および予測されたすべての値を同時に参照できます。 | File |
number_of_time_steps_to_forecast (オプション) | 予測する時間ステップ数を指定する正の整数。この値は、入力時空間キューブの合計時間ステップ数の 50% より大きくできません。デフォルト値は 1 時間ステップです。 | Long |
curve_type (オプション) | 入力時空間キューブの値を予測するため使用される「曲線タイプ」を指定します。
| String |
number_for_validation (オプション) | 各時系列の最後で、検証のため除外する時間ステップ数。デフォルト値は入力時間ステップ数の 10% (端数切り捨て) で、この値は時間ステップ数の 25% より大きくできません。値 0 を指定すると、時間ステップは一切除外されません。 | Long |
outlier_option (オプション) | 統計的に有意な時系列外れ値が特定されるかどうかを指定します。
| String |
level_of_confidence (オプション) | 時系列外れ値のテストの信頼度を指定します。
| String |
maximum_number_of_outliers | 各場所で外れ値を宣言できる時間ステップの最大数。デフォルト値は、入力時空間キューブの時間ステップ数の 5 パーセント (端数切り捨て) に相当します (1 以上の値が必ず使用されます)。この値は、時間ステップ数の 20 パーセントを超えることはできません。 | Long |
コードのサンプル
次の Python スクリプトは、[CurveFitForecast] ツールの使用方法を示します。
import arcpy
arcpy.env.workspace = "C:/Analysis"
# Forecast four time steps using a linear curve.
arcpy.stpm.CurveFitForecast("Population.nc", "Pop_NONE_ZEROS",
"Analysis.gdb/Forecasts",
"outForecastCube.nc", 4,
"LINEAR", 5)
次の Python スクリプトは、[CurveFitForecast] ツールを使用して人口を予測する方法を示します:
# Forecast population levels using curve fitting.
# Import system modules.
import arcpy
# Set property to overwrite existing output.
arcpy.env.overwriteOutput = True
# Set workspace.
workspace = r"C:\Analysis"
arcpy.env.workspace = workspace
# Forecast three time steps using auto-detect.
arcpy.stpm.CurveFitForecast("Population.nc", "Pop_NONE_ZEROS",
"Analysis.gdb/Forecasts", "outForecastCube.nc"
3, "AUTO_DETECT", 5, "IDENTIFY", "90%", 4)
# Create a feature class visualizing the forecasts.
# Output can only be viewed in a Scene view.
arcpy.stpm.VisualizeSpaceTimeCube3D("outForecastCube.nc", "Pop_NONE_ZEROS",
"VALUE", "Analysis.gdb/ForecastsFC")
環境
ライセンス情報
- Basic: Yes
- Standard: Yes
- Advanced: Yes