Видимость (3D Analyst)

Доступно с лицензией Spatial Analyst.

Доступно с лицензией 3D Analyst.

Сводка

Определяет местоположения растровой поверхности, видимые для набора объектов-наблюдателей или какие точки наблюдения видны из каждого положения на поверхности растра.

Иллюстрация

Иллюстрация инструмента Видимость с включенной опцией Частота
Выходные данные инструмента Видимость с включенной опцией Частота, отображенные на высотной поверхности с отмывкой рельефа.
Иллюстрация инструмента Видимость с включенной опцией Наблюдатели
Выходные данные инструмента Видимость с включенной опцией Наблюдатели, отображенные на высотной поверхности с отмывкой рельефа.

Использование

  • Инструмент поддерживает два типа анализа видимости, Частота и Наблюдатели, которые выбираются параметром Тип анализа. Для анализа первого типа инструмент определяет, какие местоположения растровой поверхности видимы для набора наблюдателей. Для другого параметра определяется, какие наблюдатели видны из каждого местоположения на поверхности растра.

  • Если входной растр содержит нежелательные шумы, вызванные погрешностями определений опорных точек, то при подключенном дополнительном модуле ArcGIS Spatial Analyst можно выполнить сглаживание растра с помощью низкочастотного фильтра, например, опции Среднее Фокальной статистики, до запуска этого инструмента.

  • Видимость центра каждой ячейки определяется путем сравнивания угла высоты до центра ячейки с углом высоты локального горизонта. Локальный горизонт вычисляется с помощью рассмотрения участка поверхности между точкой наблюдения и центром текущей ячейки. Если точка лежит над местным горизонтом, она считается видимой.

  • Инструмент создает дополнительный выходной растр над уровнем поверхности (AGL). Каждая ячейка выходного растра AGL содержит значение минимальной высоты, которое должно быть добавлено к ячейке, чтобы сделать ее видимой хотя бы для одного наблюдателя.

    Если входные объекты-наблюдатели содержат несколько наблюдателей, выходное значение является минимальным из значений AGL от каждого из отдельных наблюдателей.

  • Используйте параметры настройки наблюдателя для лучшего управления процессом анализа видимости. Например, с помощью параметра уровня глаз наблюдателя можно задать отступ наблюдателя по высоте.

  • Когда возникает необходимость пересчитать входной растр, используется метод билинейной интерполяции. Например, входной растр может быть пересчитан, когда выходные система координат, экстент или размер ячеек отличаются от входных.

Синтаксис

Visibility(in_raster, in_observer_features, out_raster, {out_agl_raster}, {analysis_type}, {nonvisible_cell_value}, {z_factor}, {curvature_correction}, {refractivity_coefficient}, {surface_offset}, {observer_elevation}, {observer_offset}, {inner_radius}, {outer_radius}, {horizontal_start_angle}, {horizontal_end_angle}, {vertical_upper_angle}, {vertical_lower_angle})
ParameterОбъяснениеТип данных
in_raster

Входной растр поверхности.

Raster Layer
in_observer_features

Класс пространственных объектов, который определяет местоположения наблюдения.

Входными данными могут быть точечные или полилинейные объекты.

Feature Layer
out_raster

Выходной растр.

В выходных данных будет записано либо число, соответствующее числу точек наблюдения, из которых можно видеть каждую точку на входном растре (тип анализа FREQUENCY), либо местоположения наблюдателей, видимые из каждой ячейки растровой поверхности (опция OBSERVERS).

Raster Dataset
out_agl_raster
(Дополнительный)

Выходной растр над уровнем поверхности (AGL).

AGL создает растр, в котором значение каждой ячейки является минимальной высотой, которая должна быть добавлена к невидимой ячейке, чтобы сделать ее видимой хотя бы для одного наблюдателя.

Ячейки, которые уже были видны, в выходном растре будут иметь значение 0.

Raster Dataset
analysis_type
(Дополнительный)

Тип анализа видимости.

  • FREQUENCYВ выходных данных будет записано число, соответствующее числу наблюдений каждого местоположения ячейки входного растра из входных местоположений объектов-наблюдателей (точек или вершин полилинейных объектов наблюдения). Используется по умолчанию.
  • OBSERVERSВыходные данные определяют, какие точки наблюдения видны из каждого положения на поверхности растра.
String
nonvisible_cell_value
(Дополнительный)

Значение, присваиваемое невидимым ячейкам.

  • ZEROНевидимым ячейкам присваивается 0. Используется по умолчанию.
  • NODATAНевидимым ячейкам присваивается NoData.
Boolean
z_factor
(Дополнительный)

Количество наземных единиц измерения координат x,y в одной единице измерения z-значения поверхности.

Коэффициент z приводит в соответствие единицы измерения z-значений в том случае, если они отличаются от единиц измерения координат x,y входной поверхности. При вычислении результирующей выходной поверхности z-значения входной поверхности умножаются на коэффициент по z.

Если координаты x,y и z-значения приведены в одной и той же системе координат, коэффициент z равен 1. Используется по умолчанию.

Если координаты x,y и z-значения приведены в отличающихся единицах измерения, для коэффициента по z должно быть задано соответствующее значение, или же результаты будут некорректными. Например, если единицы измерения для z-значений – футы, а координаты x,y приведены в метрах, для преобразования z-значений из футов в метры вы должны использовать z-коэффициент, равный 0,3048 (1 фут = 0,3048 метра).

Double
curvature_correction
(Дополнительный)

Позволяет применять поправки на кривизну земли.

  • FLAT_EARTHПоправки на кривизну земли учитываться не будут. Используется по умолчанию.
  • CURVED_EARTHПоправки на кривизну земли будут применяться.
Boolean
refractivity_coefficient
(Дополнительный)

Коэффициент рефракции видимого диапазона света в воздухе.

Значение, предлагаемое по умолчанию, равно 0,13.

Double
surface_offset
(Дополнительный)

Это значение определяет вертикальное расстояние, которое должно быть добавлено к z-значению каждой ячейки, в том случае, если этот параметр учитывается в анализе видимости. Его значение должно быть положительным целым числом или числом с плавающей точкой.

Вы можете выбрать поле во входном наборе данных объектов - наблюдателей или указать числовое значение.

По умолчанию используется числовое поле OFFSETB, если оно имеется в атрибутивной таблице входных объектов-наблюдателей. Вы можете перезаписать его, указав другое числовое поле или значение.

Если этот параметр не задан и поле по умолчанию отсутствует в атрибутивной таблице входных объектов-наблюдателей, используется значение 0.

Double; Field
observer_elevation
(Дополнительный)

Это значение используется для определения высоты точек или вершин наблюдения на поверхности.

Вы можете выбрать поле во входном наборе данных объектов - наблюдателей или указать числовое значение.

По умолчанию используется числовое поле SPOT, если оно имеется в атрибутивной таблице входных объектов-наблюдателей. Вы можете перезаписать его, указав другое числовое поле или значение.

Если этот параметр не задан и поле по умолчанию отсутствует в атрибутивной таблице входных объектов-наблюдателей, значение будет вычисляться с помощью билинейной интерполяции значений высот ячеек, окружающих точку наблюдения.

Double; Field
observer_offset
(Дополнительный)

Это значение определяет вертикальное расстояние, которое должно быть добавлено к z-значению высоты наблюдателя. Его значение должно быть положительным целым числом или числом с плавающей точкой.

Вы можете выбрать поле во входном наборе данных объектов - наблюдателей или указать числовое значение.

По умолчанию используется числовое поле OFFSETA, если оно имеется в атрибутивной таблице входных объектов-наблюдателей. Вы можете перезаписать его, указав другое числовое поле или значение.

Если этот параметр не задан и поле по умолчанию отсутствует в атрибутивной таблице входных объектов-наблюдателей, используется значение 1.

Double; Field
inner_radius
(Дополнительный)

Это значение определяет начальное расстояние, от которого определяется видимость. Ячейки, расположенные ближе этого расстояния, являются невидимыми на выходном растре, но могут при этом блокировать видимость ячеек, расположенных между внутренним и внешним радиусом.

Это может быть положительное или отрицательное целочисленное значение или значение с плавающей точкой. Если это положительное значение, оно интерпретируется как трехмерное расстояние по линии взгляда. Если это отрицательное значение, оно интерпретируется как двухмерное планиметрическое расстояние.

Вы можете выбрать поле во входном наборе данных объектов - наблюдателей или указать числовое значение.

По умолчанию используется числовое поле RADIUS1, если оно имеется в атрибутивной таблице входных объектов-наблюдателей. Вы можете перезаписать его, указав другое числовое поле или значение.

Если этот параметр не задан и поле по умолчанию отсутствует в атрибутивной таблице входных объектов-наблюдателей, используется значение 0.

Double; Field
outer_radius
(Дополнительный)

Это значение определяет максимальное расстояние, от которого определяется видимость. Ячейки за пределами этого радиуса исключаются из анализа.

Это может быть положительное или отрицательное целочисленное значение или значение с плавающей точкой. Если это положительное значение, оно интерпретируется как трехмерное расстояние по линии взгляда. Если это отрицательное значение, оно интерпретируется как двухмерное планиметрическое расстояние.

Вы можете выбрать поле во входном наборе данных объектов - наблюдателей или указать числовое значение.

По умолчанию используется числовое поле RADIUS2, если оно имеется в атрибутивной таблице входных объектов-наблюдателей. Вы можете перезаписать его, указав другое числовое поле или значение.

Если этот параметр не задан и поле по умолчанию отсутствует в атрибутивной таблице входных объектов-наблюдателей, используется значение бесконечности.

Double; Field
horizontal_start_angle
(Дополнительный)

Это значение определяет начальный угол диапазона горизонтального сканирования. Это значение задается в градусах от 0 до 360; может быть как целым, так и с плавающей запятой, 0 ориентирован на север. По умолчанию значение равно 0.

Вы можете выбрать поле во входном наборе данных объектов - наблюдателей или указать числовое значение.

По умолчанию используется числовое поле AZIMUTH1, если оно имеется в атрибутивной таблице входных объектов-наблюдателей. Вы можете перезаписать его, указав другое числовое поле или значение.

Если этот параметр не задан и поле по умолчанию отсутствует в атрибутивной таблице входных объектов-наблюдателей, используется значение 0.

Double; Field
horizontal_end_angle
(Дополнительный)

Это значение определяет конечный угол диапазона горизонтального сканирования. Это значение задается в градусах от 0 до 360; может быть как целым, так и с плавающей запятой, 0 ориентирован на север. Значение, предлагаемое по умолчанию, равно 360.

Вы можете выбрать поле во входном наборе данных объектов - наблюдателей или указать числовое значение.

По умолчанию используется числовое поле AZIMUTH2, если оно имеется в атрибутивной таблице входных объектов-наблюдателей. Вы можете перезаписать его, указав другое числовое поле или значение.

Если этот параметр не задан и поле по умолчанию отсутствует в атрибутивной таблице входных объектов-наблюдателей, используется значение 360.

Double; Field
vertical_upper_angle
(Дополнительный)

Это значение определяет верхнюю границу вертикального угла сканирования относительно горизонтальной плоскости. Это значение задается в градусах, целочисленными или с плавающей точкой. Допустимый диапазон от -90 и до 90 (крайнее значение включено).

Значение этого параметра должно быть больше, чем значение параметра Вертикальный нижний угол.

Вы можете выбрать поле во входном наборе данных объектов - наблюдателей или указать числовое значение.

По умолчанию используется числовое поле VERT1, если оно имеется в атрибутивной таблице входных объектов-наблюдателей. Вы можете перезаписать его, указав другое числовое поле или значение.

Если этот параметр не задан и поле по умолчанию отсутствует в атрибутивной таблице входных объектов-наблюдателей, используется значение 90.

Double; Field
vertical_lower_angle
(Дополнительный)

Это значение определяет нижнюю границу вертикального угла сканирования относительно горизонтальной плоскости. Это значение задается в градусах, целочисленными или с плавающей точкой. Допустимый диапазон от -90 и до 90 (крайнее значение исключено).

Значение этого параметра должно быть меньше, чем значение параметра Вертикальный верхний угол.

Вы можете выбрать поле во входном наборе данных объектов - наблюдателей или указать числовое значение.

По умолчанию используется числовое поле VERT2, если оно имеется в атрибутивной таблице входных объектов-наблюдателей. Вы можете перезаписать его, указав другое числовое поле или значение.

Если этот параметр не задан и поле по умолчанию отсутствует в атрибутивной таблице входных объектов-наблюдателей, используется значение -90.

Double; Field

Пример кода

Visibility, пример 1 (окно Python)

В этом примере определяются местоположения поверхности, видимые для набора наблюдателей, заданного с помощью шейп-файла.

import arcpy
from arcpy import env
env.workspace = "c:/data"

arcpy.Visibility_3d("elevation", "observers.shp", "c:/output/visiout1", 
                    "c:/output/aglout1", "FREQUENCY", "NODATA", "1", 
                    "CURVED_EARTH", "0.13", "OFFSETB", "SPOT", "OFFSETA", 
                    "RADIUS1", "RADIUS2", "AZIMUTH1", "AZIMUTH2", 
                    "VERT1", "VERT2")
Visibility, пример 2 (автономный скрипт)

В этом примере определяется, какие точки наблюдения являются видимыми из каждого местоположения поверхности.

# Name: Viewshed_3d_Ex_02.py
# Description: Determines the raster surface locations visible 
#              to a set of observer features.
# Requirements: 3D Analyst Extension

# Import system modules
import arcpy
from arcpy import env

# Set environment settings
env.workspace = "c:/data"

# set local variables
inRaster = "elevation"
inObserverFeatures = "observers.shp"
outRaster = "c:/output/visiout1"
aglOutput = "c:/output/aglout1"
analysisType = "OBSERVERS"
nonVisibleValue = "ZERO"
zFactor = 1
useEarthCurvature = "CURVED_EARTH"
refractivityCoefficient = 0.13
surfaceOffset = 500
observerElevation = 2000
observerOffset = 500
innerRadius = 20000
outerRadius = 100000
horizStartAngle = 45
horizEndAngle = 215
vertUpperAngle = 5
vertLowerAngle = -5

# Execute Visibility
arcpy.Visibility_3d(inRaster, inObserverFeatures, outRaster, algOutput,
                    analysisType, nonVisibleValue, zFactor, useEarthCurvature,
                    refractivityCoefficient, surfaceOffset, observerElevation,
                    observerOffset, innerRadius, outerRadius, horizStartAngle,
                    horizEndAngle, vertUpperAngle, vertLowerAngle)

Информация о лицензиях

  • Basic: Требуется 3D Analyst или Spatial Analyst
  • Standard: Требуется 3D Analyst или Spatial Analyst
  • Advanced: Требуется 3D Analyst или Spatial Analyst

Связанные разделы