Этот инструмент идентифицирует статистически значимые пространственные кластеры высоких значений (горячих точек) и низких значений (холодных точек). Он создает Выходной класс объектов с z-оценкой, p-значением и полем бина уровня достоверности (Gi_Bin) для каждого объекта во Входном классе объектов.
Z-оценки и р-значения являются измерениями статистической значимости, которая определяет, можно ли отклонить нулевую гипотезу, по каждому объекту. В действительности, они указывают, насколько наблюдаемая пространственная кластеризация является чем-то большим, чем случайное распределение тех же значений. Поля p-значений и z-оценки не отражают никакой тип коррекции средней доли ложных отклонений гипотезы (FDR).
Поле Gi_Bin определяет статистическую значимость горячих и холодных точек, вне зависимости от применения коррекции FDR. Объекты с +/-3 bins отражают статистическую значимость с уровнем достоверности 99 процентов; объекты с +/-2 bins отражают статистическую значимость с уровнем достоверности 95 процентов; объекты с +/-1 bins отражают статистическую значимость с уровнем достоверности 90 процентов; а кластеризация для объектов в bin 0 не имеет статистической значимости. Без коррекции FDR статистическая значимость основывается на полях p-значения и z-оценки. При включении параметра Применить коррекцию средней доли ложных отклонений гипотезы (FDR), критические p-значения, определяющие уровни достоверности, уменьшаются в соответствии с множественным тестированием и пространственной зависимостью.
Высокая z-оценка и низкое р-значение для объекта свидетельствует о пространственной кластеризации высоких значений. Низкая негативная z-оценка и низкое р-значение для объекта свидетельствуют о пространственной кластеризации низких значений. Чем выше (или ниже) z-оценка, чем сильнее интенсивность кластеризации. Z-оценка, стремящаяся к нулю, указывает на отсутствие очевидного объединения в кластеры.
-
z-оценка основана на вычислении гипотезы нулевой рандомизации. Дополнительные сведения о z-оценке см. в разделе Что такое z-оценка? Что такое p-значение?
Когда входные объекты не имеют проекции (т.е. когда координаты заданы в градусах, минутах и секундах), или когда в качестве выходной системы координат используется географическая система координат, расстояния будут рассчитываться с помощью хордовых измерений. Измерения хордовых расстояний применяются постольку, поскольку они могут быть быстро вычислены и дают очень хорошие оценки истинных геодезических расстояний, по крайней мере для точек, расстояние между которыми в пределах порядка тридцати градусов. Хордовые расстояния основаны на эллипосиде вращения. Если взять две любые точки на поверхности Земли, то хордовым расстоянием между ними будет длина прямой линии, проходящей через трехмерное тело Земли и соединяющей эти две точки. Хордовые расстояния выражаются в метрах.
Внимание:
Следует обязательно производить проецирование ваших данных, если область исследования превышает 30 градусов. Хордовые расстояния не обеспечивают точных оценок геодезических расстояний, превышающих 30 градусов.
Когда при анализе используются хордовые расстояния, параметр Диапазон расстояний или пороговое расстояние, если он указывается, должен быть выражен в метрах.
-
Для линейных или полигональных объектов, при расчете расстояний используются центроиды. Для мультиточек, полилиний или полигонов, состоящих их нескольких частей, центроид вычисляется с использованием средневзвешенного центра всех частей объекта. При определении весов точечные объекты имеют равный вес (1). Для линейных объектов это длина сегмента. Для полигональных – площадь.
Входное поле должно содержать разные значения. Для математических расчетов, выполняемых в рамках этих статистических операций, требуется, чтобы исходные переменные были разными. Например, анализ не будет выполняться, если все входящие значения равны 1. Чтобы использовать данный инструмент для анализа пространственных закономерностей случайных данных, попробуйте агрегировать данные инцидентов или используйте инструмент Оптимизированный анализ горячих точек.
Инцидентными данными являются точки, представляющие события (преступление, дорожно-транспортное происшествие) или объекты (деревья, магазины), по отношению к которым ваше внимание концентрируется скорее на их наличии или отсутствии, чем на атрибутах, свойственных каждой такой точке.
Инструмент Оптимизированный анализ горячих точек обрабатывает данные и автоматически выбирает настройки параметров для оптимизации горячих точек. Он агрегирует случайные данные, выбирает соответствующий масштаб анализа и настраивает результаты для множественного тестирования и пространственной зависимости. Выбранные опции параметров записываются в сообщения и могут быть полезны для более точной настройки параметров. Инструмент предлагает полный контроль и гибкую настройку параметров.
Выбор параметра Определение пространственных взаимоотношений должен отражать внутренние отношения между пространственными объектами, которые вы анализируете. Чем более точно вы сможете смоделировать взаимоотношения пространственных объектов в пространстве, тем более точные результаты вы получите. Рекомендации см. в разделе Лучшие практики для выбора определения пространственных отношений. Ниже приведены дополнительные советы:
По умолчанию выбрана опция Полоса фиксированных расстояний. Параметр Диапазон расстояний или пороговое расстояние гарантирует, что каждый объект имеет, по крайней мере, одного соседа. Это важно, но часто значение, заданное по умолчанию, не будет являться самым подходящим расстоянием для анализа. В разделе Практические примеры при выборе диапазона фиксированных расстояний приведены стратегии, которые помогут определить значение диапазона расстояний, подходящее для вашего анализа.
При использовании опций Обратное расстояние или Квадрат обратного расстояния, когда для параметра Диапазон расстояний или Пороговое расстояние указано значение 0, все объекты считаются соседями всех других объектов. Когда этот параметр остается пустым, применяется расстояние по умолчанию.
Веса для расстояний менее 1 становятся не стабильны после обращения. Следовательно, при взвешивании для объектов, разделенных менее чем одной единицей расстояния, получают вес 1.
Для опций обратного расстояния (Обратное расстояние, Квадрат обратного расстояния и Зона индифферентности) любым двум совпадающим точкам будет присвоен вес 1, чтобы избежать деления на ноль. Это гарантирует, что объекты не будут исключены из анализа.
Дополнительные опции для параметра Определение пространственных взаимоотношений, включая пространственно-временные отношения, доступны при использовании инструмента Построить матрицу пространственных весов. Чтобы эффективно применять дополнительные опции, до выполнения анализа постройте файл матрицы пространственных весов; выберите Получить пространственные веса из файла для параметра Определение пространственных взаимоотношений, а для параметра Файл матрицы весов задайте путь к файлу с пространственными весами, который вы создали.
-
Дополнительные сведения о пространственно-временном кластерном анализе см. в документе Пространственно-временной анализ.
-
Слои карты можно использовать для определения Входного класса объектов. Если в слое есть выборка, только выбранные объекты будут включены в анализ.
Если указан файл матрицы весов с расширением .swm, инструмент предполагает получение файла матрицы весов, созданного с помощью инструментов Построить матрицу пространственных весов или Построить матрицу пространственных весов для сети, в противном случае предполагается файл матрицы весов в формате ASCII. В некоторых случаях, поведение инструмента различается в зависимости от типа используемого файла матрицы весов:
- ASCII-файл с матрицей пространственных весов:
- Веса используются без изменений. Отсутствующие отношения объект к объекту рассматриваются как нули.
- Вес по умолчанию для собственного потенциала равен 0, если не указать значение параметра Поле собственного потенциала или точно указать веса собственного потенциала.
- Учитываются асимметричные отношения, это позволяет объекту получить соседний объект, который сам не имеет соседства. Это означает, что соседний объект включается в локальные вычисления среднего значения для исходного объекта, но не включается в вычисления глобального среднего.
- Если веса нормализованы, то результаты могут быть непригодны для анализа выбранного набора. Для выполнения анализа выбранного набора данных, конвертируйте ASCII-файл с матрицей весов в файл .swm, считав данные ASCII-файла в таблицу и используя опцию Конвертировать таблицу для параметра Определение пространственных взаимоотношений с инструментом Построить матрицу пространственных весов.
- Файл матрицы пространственных весов в формате SWM:
- Если веса уже были нормализованы, то они будут нормализованы вновь для выбранного набора данных. В противном случае они будут использоваться без изменений.
- Вес по умолчанию для собственного потенциала – 1, если не указать значение параметра Поле собственного потенциала.
Для выполнения анализа с ASCII-файлом с матрицей пространственных весов требуется большой объем памяти. При анализе более 5000 объектов, ASCII-файл с матрицей пространственных весов следует конвертировать в SWM-файл. Сначала вставьте ваш ASCII-файл с весами в форматированную таблицу (например, с помощью Excel). Затем запустите инструмент Построить матрицу пространственных весов, задав значение Конвертировать таблицу для параметра Определение пространственных взаимоотношений. В результате будет создан SWM-файл с матрицей пространственных весов.
Выходной класс объектов инструмента автоматически добавляется к таблице содержания с использованием способа отображения по умолчанию, примененного к полю Gi_Bin. Применяемое отображение со шкалой «от горячего к холодному» определяется файлом слоя в <ArcGIS Pro>\Resources\ArcToolBox\Templates\Layers. Способ отображения по умолчанию, если это необходимо, можно применить заново путем изменения символов слоя шаблона.
Выходные данные этого инструмента включают гистограмму значений входного поля, которую можно открыть в разделе Выходной класс пространственных объектов на панели Содержание.
-
Дополнительную информацию о параметрах инструмента см. в справочной статье Моделирование пространственных отношений.
Внимание:
При использовании шейп-файлов, помните, что в них нельзя хранить нулевые (null) значения. Инструменты или другие процедуры, создающие шейп-файлы из прочих входных данных, могут хранить значения NULL в виде 0 или оперировать ими как нулем. В некоторых случаях нули в шейп-файлах хранятся как очень маленькие отрицательные числа. Это может привести к неожиданным результатам. Дополнительные сведения см. в разделе Рекомендации по геообработке выходных данных шейп-файла.
Прежние версии:
Стандартизация строк не влияет на этот инструмент. Результаты выполнения инструмента будут совпадать при запуске со стандартизацией строк и без нее. Параметр Стандартизация отключен, он используется только для обеспечения обратной совместимости инструмента.
При использовании этого инструмента в Python, объект result, возвращаемый при запуске инструмента, содержит следующие выходные данные:
Положение индекса | Описание | Тип данных |
---|
0 | Выходной класс объектов | Класс пространственных объектов |
1 | Имя поля Результаты (GiZScore) | Поле |
2 | Имя поля Вероятность (GiPValue) | Поле |
3 | Имя поля ID источника (SOURCE_ID) | Поле |