ArcGIS Pro 2.8 API Reference Guide
IGeometryEngine Interface Members
Methods 

ArcGIS.Core.Geometry Namespace : IGeometryEngine Interface

The following tables list the members exposed by IGeometryEngine.

Public Methods
 NameDescription
 Method Produces a copy of the given geometry that is an accelerated geometry used to speed up relational operations. Only polyline and polygon geometries can be accelerated. If the geometry cannot be accelerated, the method returns the same input geometry.  
 MethodGets the area of the geometry. This is a planar measurement using 2D Cartesian mathematics to compute the area.  
 MethodConstructs a polygon that fills in the gaps between the existing polygon and polyline.  
 MethodCalculates the boundary of the input geometry.  
 MethodOverloaded.   
 Method Calculates M attribute values for each non-simple (NaN) M-value from existing simple (non-NaN) M attributes on the specified geometry. The non-simple M values are obtained by extrapolation/interpolation for polylines and interpolation for polygons.  
 Method Calculates Z attribute values for each non-simple (NaN) Z-value from existing simple (non-NaN) Z attributes on the specified geometry. The non-simple Z values are obtained by extrapolation/interpolation for polylines and interpolation for polygons.  
 Method Calibrates M values using M values of input points.  
 MethodCenter the envelope at the specified x and y coordinates.  
 MethodGets the centroid (center of gravity) of the geometry.  
 MethodConstructs the polygon created by clipping geometry by envelope.  
 MethodCreates a multipatch from the input polygon or polyline.  
 MethodCreates a multipatch from the input polygon or polyline.  
 MethodCreates a multipatch from the input polygon or polyline.  
 MethodCreates a multipatch from the input polygon or polyline.  
 MethodCreates a multipatch from the input polygon or polyline.  
 Method Constructs a point at a specified angle from the horizontal axis and a specified distance away from the input point.  
 MethodGenerates polygons from a set of polylines.  
 MethodReturns true if geometry1 contains geometry2.  
 MethodConstructs the convex hull of the geometry.  
 MethodReturns true if geometry1 crosses geometry2.  
 MethodSplits this geometry into parts. A polyline will be split into two parts at most.  
 MethodDensifies the specified geometry.  
 MethodDensifies the specified geometry.  
 MethodDensifies the specified geometry.  
 MethodDensifies the specified geometry.  
 Method Performs the topological difference operation on the two geometries.  
 MethodReturns true if geometry1 and geometry2 are disjoint.  
 MethodReturns true if geometry1 and geometry2 are disjoint in a 3-dimensional manner.  
 MethodMeasures the planar distance between two geometries.  
 MethodMeasures the 3-dimensional planar distance between two geometries.  
 MethodReturns true if geometry1 and geometry2 occupy the same space.  
 MethodOverloaded.   
 MethodOverloaded.   
 MethodWrites a JSON version of the input geometry to a string.  
 MethodOverloaded.   
 MethodWrites an OGC well-known text formatted version of the input geometry to a string.  
 Method Performs the extend operation on a polyline using a polyline as the extender. The output polyline will have the first and last segment of each part extended to the extender if the segments can be interpolated to intersect the extender. In the case that the segments can be extended to multiple segments of the extender, the shortest extension is chosen. Only end points for parts that are not shared by the end points of other parts will be extended. If the polyline cannot be extended by the input extender, then a null will be returned.  
 MethodPerforms the generalize operation on the geometry.  
 MethodPerforms the generalize operation on the geometry.  
 MethodGets the geodesic area of a geometry.  
 MethodOverloaded.   
 MethodCalculates the geodesic distance between two geometries.  
 Method The function returns a piecewise approximation of a geodesic ellipse (or geodesic circle, if semiAxis1Length = semiAxis2Length). Constructs a geodesic ellipse centered on the specified point. If this method is used to generate a polygon or a polyline, the result may have more than one part, depending on the size of the ellipse and its position relative to the horizon of the coordinate system. When the method generates a polyline or a multipoint, the result vertices lie on the boundary of the ellipse. When a polygon is generated, the interior of the polygon is the interior of the ellipse, however the boundary of the polygon may contain segments from the spatial reference horizon, or from the GCS extent.  
 MethodGets the geodesic length of the input geometry.  
 Method The function returns a piecewise approximation of a geodesic ellipse (or geodesic circle, if SemiAxis1Length = SemiAxis2Length). Constructs a geodesic ellipse centered on the specified point. If this method is used to generate a polygon or a polyline, the result may have more than one part, depending on the size of the sector and its position relative to the horizon of the coordinate system. When the method generates a polyline or a multipoint, the result vertices lie on the boundary of the ellipse. When a polygon is generated, the interior of the polygon is the interior of the sector, however the boundary of the polygon may contain segments from the spatial reference horizon, or from the GCS extent.  
 MethodCreates geodetic segments connecting existing vertices and densifies the segments.  
 MethodCreates geodetic segments connecting existing vertices and densifies the segments.  
 Method Calculates distance and azimuth on the spheroid between two points using the given geodetic curve type.  
 Method Moves each point in the input array by the given distance. The function returns the number of points that has been moved. Points that are outside of the horizon will be discarded.  
 MethodReturns the size of the buffer in bytes that will be required to hold the Esri shapefile version of the input geometry.  
 Method Gets the minimum and maximum M value.  
 Method Determines whether Ms are monotonic, and if so, whether they are ascending or descending.  
 Method Get the M values at the specified distance along the multipart. Two M values can be returned if the specified distance is exactly at the beginning or the ending of a part.  
 Method Gets the line segments corresponding to the normal at the locations along the geometry where the specified M occurs.  
 Method Gets a multipoint corresponding to the locations along the multipart where the specified M value occurs. Coordinates/measures are interpolated when appropriate.  
 MethodGets the list of predefined coordinate systems for the given filter.  
 MethodGets the list of predefined geographic transformations.  
 MethodGets the subcurve of the input multipart between fromDistance and toDistance.  
 MethodGets the 3D subcurve of the input multipart between fromDistance and toDistance.  
 MethodGets a polyline corresponding to the subcurve(s) between the specified M values.  
 MethodReturns the size of the buffer in bytes that will be required to hold the OGC well-known binary version of the input geometry.  
 MethodOverloaded.   
 MethodCreates a geometry based on the contents of the input Esri shapefile formatted buffer.  
 MethodCreates a geometry from the input JSON string.  
 MethodCreates a geometry based on the contents of the input well-known binary buffer.  
 MethodCreates a geometry from the input well-known text string.  
 Method Sets the M value at the given distance along the multipart.  
 Method Generates M values by linear interpolation over a range of points.  
 MethodOverloaded.   
 MethodReturns true if geometry1 and geometry2 intersect.  
 MethodIndicates whether this geometry is known to be topologically consistent according to the geometry type for storage in a database.  
 MethodPerforms the LabelPoint operation on the geometry.  
 MethodGets the length for a specified geometry. This is a planar measurement using 2D Cartesian mathematics.  
 MethodGets the 3D length for a specified geometry.  
 MethodOverloaded.   
 MethodConstructs a point the specified distance along a polyline or polygon.  
 Method Separates the components of a geometry into single component geometries.  
 MethodFinds the nearest point in the geometry to a specified point.  
 MethodFinds the nearest point, in 3D space, on a z-aware geometry to a specified point.  
 MethodFinds the nearest vertex in the geometry to a specified point.  
 MethodFolds the geometry into a range of 360 degrees. This may be necessary when wrap around is enabled on the map. If geometry is an Envelope then a Polygon will be returned unless the Envelope is empty in which case an empty Envelope will be returned.  
 Method Returns offset version of the input geometry. The offset operation creates a geometry that is a constant distance from an input polyline or polygon. It is similar to buffering, but produces a one sided result. If offset distance > 0, then the offset geometry is constructed to the right of the oriented input geometry, otherwise it is constructed to the left. For a simple polygon, the orientation of outer rings is clockwise and for inner rings it is counter clockwise. So the "right side" of a simple polygon is always its inside. The bevelRatio is multiplied by the offset distance and the result determines how far a mitered offset intersection can be from the input curve before it is beveled.  
 MethodReturns true if geometry1 and geometry2 overlap.  
 Method Projects the given geometry to a new spatial reference. Same as GeometryEngine.ProjectEx(geometry, ProjectionTransformation.Create(geometry.SpatialReference, outputSpatialReference)); or, if both spatial references have vertical coordinate systems same as GeometryEngine.ProjectEx(geometry, ProjectionTransformation.CreateWithVertical(geometry.SpatialReference, outputSpatialReference));  
 MethodProjects the given geometry to a new spatial reference.  
 MethodOverloaded.   
 MethodOverloaded.   
 MethodOverloaded.   
 MethodOverloaded.   
 MethodOverloaded.   
 Method Reflects the input geometry about the given line.  
 MethodPerforms custom relational operations between two geometries using a Dimensionally Extended Nine-Intersection Model, DE-9IM, formatted string.  
 MethodReplaces each non-simple (NaN) z-value on the geometry with the specified z-value. All other simple (non-NaN) z-values are unchanged.  
 MethodReshapes a polygon or polyline with a single path polyline.  
 MethodReverse the orientation of the geometry.  
 MethodRotates the geometry about the specified origin point.  
 MethodOverloaded.   
 Method Sets the Ms at the beginning and the end of the geometry and interpolates the M values between these values.  
 MethodReplaces each Z value on the geometry with the specified Z value.  
 Method Sets the M values to the cumulative length from the start of the multipart.  
 Method Calculates the area of the geometry on the surface of the Earth ellipsoid. This method preserves the shape of the geometry in its coordinate system.  
 MethodCalculates the length of the geometry on the surface of the Earth ellipsoid. This method preserves the shape of the geometry in its coordinate system.  
 MethodOverloaded.   
 Method Simplifies the given geometry to make it topologically consistent according to the geometry type for storage in a database. For instance, it rectifies polygons that may be self-intersecting.  
 MethodUse either planar, nonplanar, or network simplify regardless of polyline M awareness.  
 MethodSlices a polygon into a set of equal area parts.  
 MethodAdds a new vertex along the curve at the specified input point, or the projection onto the curve of the specified input point.  
 Method Performs the symmetric difference operation on the two geometries. The symmetric difference is the union of the geometries minus the intersection.  
 MethodReturns true if geometry1 touches geometry2.  
 Method Transforms an array of 2D coordinates. Returns an array of transformed 2D coordinates.  
 Method Transforms an array of 3D coordinates. Returns an array of transformed 3D coordinates.  
 MethodOverloaded.   
 MethodReturns true if geometry1 is within geometry2.  
Top
See Also

Reference

IGeometryEngine Interface
ArcGIS.Core.Geometry Namespace