Модуль ArcGIS Image Analyst предоставляет богатый набор инструментов геообработки ArcGIS Pro.
Инструменты геообработки
Большое число инструментов геообработки поставляется с модулем Image Analyst. Эти инструменты сгруппированы по категориям связанных функциональных возможностей в следующей таблице и соответствующих группах инструментов.
Выявление изменений
Группа инструментов Выявление изменений содержит инструмент для определения изменений между наборами растровых данных.
Инструмент | Описание |
---|---|
Оценивает изменения значений пикселов с течением времени с помощью метода Непрерывное обнаружение и классификация изменений (CCDC) и генерирует растр анализа изменений, содержащий результаты модели. | |
Оценивает изменения в значениях пикселов во времени с использованием метода обнаружения трендов нарушений и восстановлений на базе Landsat (LandTrendr) и создает растр анализа изменений, содержащий результаты модели. | |
Вычисляет абсолютные, относительные, категорийные или спектральные различия между двумя наборами растровых данных. | |
Генерирует растр, содержащий информацию об изменении значений пикселов, используя выходной растр анализа изменений из инструмента Анализ изменений с помощью CCDC или инструмента Анализ изменений с помощью LandTrendr. |
Классификация и Распознавание закономерностей
Инструменты Классификации изображений и распознавания образов находят, идентифицируют и количественно оценивать закономерности в данных изображений. Вы можете выполнять классическую статистическую и расширенную классификацию изображений с помощью машинного обучения и регрессионный анализ сегментированных и пиксельных наборов растровых данных. Предоставляются дополнительные инструменты для создания обучающего набора и вычисления точности классификации, а также уточнения карт классов. В следующей таблице перечислены доступные инструменты Классификации изображений и распознавания образов и дается краткое описание каждого.
Инструмент | Описание |
---|---|
Классифицирует набор растровых данных на основе файла определения классификатора Esri (.ecd) и входных наборов растровых данных. Файл .ecd содержит всю информацию, требуемую для выполнения конкретного типа поддерживаемой Esri классификации. Входные данные для этого инструмента должны соответствовать входным данным, использованным для создания требуемого файла .ecd. | |
Классифицирует многоканальный набор растровых данных с использованием спектральных методов сопоставления изображений. Входные спектральные данные могут быть заданы как класс точечных объектов или файл .json. | |
Вычисляет матрицу неточностей с ошибками пропуска и невыполнения и определяет индекс согласованности каппа, минимальное пересечение по объединению (IoU), а также вычисляет общую точность между классифицированной картой и базовыми данными. | |
Вычисляет набор атрибутов, связанный с сегментированным изображением. Входным растром может являться одноканальное или трёхканальное 8-битное сегментированное изображение. | |
Инструмент создает произвольно расположенные точки для оценки точности выполненной классификации. | |
Создает обучающие выборки из исходных точек, такие как точки оценки точности или точки обучающей выборки. Типичным случаем применения является построение обучающих выборок из существующих источников, таких как тематический растр или класс объектов. | |
Оценивает точность отдельных образцов обучающей выборки. Точность перекрестной проверки вычисляется при помощи предварительно созданного результата обучающей классификации в файле .ecd и обучающих выборок. В выходные данные входит набор растровых данных, содержащий значения неправильно классифицированных классов, и набор данных обучающей выборки с показателями точности для каждой обучающей выборки. | |
Выполняет субпиксельную классификацию и вычисляет относительную распространенность различных типов почвенно-растительного покрова для отдельных пикселов. | |
Прогнозирует значения данных с помощью выходных данных инструмента Регрессионная модель произвольных деревьев с обучением. | |
Исправляет сегменты и объекты, вырезанные по границам листов во время процесса сегментации, выполняемого как функция растра. Этот инструмент полезен для некоторых региональных процессов, например, при сегментации изображений, в которых возможно проявление несоответствий вблизи границы листов изображений. Этот шаг обработки уже включен в инструмент Сегментация методом среднего сдвига. Его следует использовать только для сегментированного изображения, не созданного этим инструментом. | |
Группирует в сегменты смежные пикселы с одинаковыми спектральными характеристиками. | |
Создает файл определения классификатора Esri (.ecd) с использованием определения классификации Изокластер. | |
Создает файл определения классификатора Esri (.ecd) с использованием метода классификации K-ближайших соседей. | |
Классификатор по методу максимального правдоподобия с обучением | Создает файл определения классификатора Esri (.ecd) с использованием определения классификации Метода максимального правдоподобия (MLC). |
Создает файл определения классификатора Esri (.ecd) с использованием метода классификации произвольных деревьев. | |
Моделирует отношение между независимой переменной и целевым набором данных с помощью анализа произвольных деревьев. | |
Создает файл определения классификатора Esri (.ecd) с использованием определения классификации Метода опорных векторов (SVM). | |
Обновляет поле Target в таблице атрибутов, чтобы сравнивать истинно точные точки с изображением классификации. |
Глубокое обучение
Инструменты глубокого обучения обнаруживают объекты в изображениях, используя несколько слоев в искусственных нейронных сетях, где каждый слой способен извлекать один или несколько уникальных объектов изображения. В следующей таблице приводится список доступных инструментов Глубокого обучения и дается их краткое описание.
Инструмент | Описание |
---|---|
Запускает обученную модель глубокого обучения на входном растре и дополнительном классе пространственных объектов для создания класса объектов или таблицы, где у каждого входного объекта имеется назначенный класс или надпись категории. | |
Запускает обученную модель глубокого обучения на входном растре для создания классифицированного растра, где каждому пикселу назначается класс надписей. | |
Вычисляет точность модели глубокого обучения сравнением объектов, выявленных инструментом Выявить объекты при помощи глубокого обучения, с истинными данными на поверхности земли. | |
Запускает обученную модель глубокого обучения для выявления изменений между двумя растрами. | |
Запускает обученную модель глубокого обучения для входного растра для построения класса с найденными пространственными объектами. Объекты могут быть ограничивающими рамками или полигонами вокруг найденных объектов или точками в центрах объектов. | |
Конвертирует надписанные векторные или растровые данные в наборы данных глубокого обучения с использованием спутникового изображения. Инструмент создает папку чипов изображений и папку файлов метаданных в определенном формате. | |
Запускает одну или несколько предварительно обученных моделей глубокого обучения на входном растре для извлечения объектов и автоматизации последующей обработки получаемых выходных данных. | |
Выявляет дубликаты объектов в выходных данных инструмента Выявить объекты при помощи глубокого обучения, в качестве шага постобработки, и создает новые выходные данные без дублей. | |
Тренирует модель глубокого обучения с использованием результатов работы инструмента Экспорт обучающих данных для глубокого обучения. | |
Обучает модель глубокого обучения путем создания конвейеров обучения и автоматизации большей части процесса обучения, включая увеличение данных, выборку модели, настройку гиперпараметров и уменьшение размера пакета. |
Извлечение
Инструменты извлечения позволяют извлечь поднабор пикселов из растра по пространственному положению или атрибутам соответствующих пикселов.
Инструмент | Описание |
---|---|
Создает таблицу или класс точечных объектов, содержащую(-ий) значения ячеек растра или набора растров, для конкретных местоположений. Местоположения определяются ячейками растра, точками, полилиниями или полигонами. |
Интерполяция
Набор инструментов интерполяции позволяет интерполировать различные типы данных.
Инструмент | Описание |
---|---|
Интерполирует временные точечные данные в многомерный растр. | |
Статистически ассимилирует данные, объединенные из нескольких источников, для получения интерполированного выходного растра. |
Алгебры карт
Алгебра карт – это способ выполнения анализа растров путем создания выражений на алгебраическом языке. Выражения создаются с помощью инструмента Калькулятор растра, позволяющего создавать выражения, которые выдают набор растровых данных. Инструмент Калькулятор растра выполняет выражение алгебры карт, построенное с помощью синтаксиса Python.
Для получения информации о Калькуляторе растра изучите раздел Обзор группы инструментов Алгебра карт
Математические
Для выполнения математических операций над наборами растровых данных есть более 60 Математических инструментов. Эти инструменты сгруппированы по функциональным областям:
- Общие
- Условные
- Логический
- Побитовые
- Boolean
- Комбинаторные
- Логический
- Относительный
- Тригонометрические
Математические (общие)
Общие математические инструменты применяют ко входным данным математические операции. Эти инструменты попадают в несколько категорий. Арифметические инструменты выполняют базовые арифметические операции, например, сложение или умножение. Есть инструменты, которые выполняют различные типы операций возведения в степень, которые включают экспоненты и логарифмы, а также основные операции степени. Остальные инструменты используются либо для конвертации знаков, либо для конвертации между целочисленными типами данных и типами данных с плавающей запятой. В следующей таблице содержится список доступных общих математических инструментов и дано краткое описание каждого.
Инструмент | Описание |
---|---|
Вычисляет абсолютное значение ячеек в растре. | |
Делит значения двух растров по принципу ячейка-за-ячейкой. | |
Вычисляет экспоненту по основанию е для ячеек растра. | |
Вычисляет экспоненту по основанию 10 для ячеек растра. | |
Вычисляет экспоненту по основанию 2 для ячеек растра. | |
Конвертирует каждое значение ячейки растра в число с плавающей точкой. | |
Преобразует значение каждой ячейки в целое число путем округления. | |
Вычисляет натуральный логарифм (по основанию е) для ячеек растра. | |
Вычисляет логарифм по основанию 10 для ячеек растра. | |
Вычисляет логарифм по основанию 2 для ячеек растра. | |
Вычитает значение второго входного растра из значений первого входного растра по принципу ячейка-за-ячейкой. | |
Находит остаток (по модулю) первого растра при делении на второй растр по принципу ячейка-за-ячейкой. | |
Меняет знак (умножением на -1) значений ячеек входного растра по принципу ячейка-за-ячейкой. | |
Складывает (суммирует) значения двух растров по принципу ячейка-за-ячейкой. | |
Возводит в степень значения ячейки растра, где степень равна значениям в другом растре. | |
Возвращает ближайшее меньшее целое значение, только представленное как значение с плавающей точкой, для каждой ячейки растра. | |
Возвращает следующее наибольшее целочисленное значение, представленное числом с плавающей точкой, для каждой ячейки растра. | |
Возводит в квадрат значения ячеек растра. | |
Вычисляет квадратный корень значений ячеек растра. | |
Перемножает значения двух растров по принципу ячейка-за-ячейкой. |
Математические (Условия)
Инструменты Математических условий позволяют контролировать выходные значения на основании условий, применяемых ко входным значениям. Существует два типа условий, которые могут применяться: запросы к атрибутам или условие, основанное на позиции условного утверждения в списке. В следующей таблице содержится список доступных математических условных инструментов и дано краткое описание каждого.
Инструмент | Описание |
---|---|
Выполняет для каждой ячейки входного растра оценку по принципу условной выборки. | |
Использует значение из растра положений, которое используется для определения того, из какого растра в списке входных растров будет получено значение выходной ячейки. | |
Устанавливает идентифицированные ячейки на NoData на основании заданного критерия. Выдает значение NoData, если при выполнении оценки условия получено значение Истина, и выдает значение, определяемое другим растром, если получено значение Ложь. |
Математические (Логические)
Логические математические инструменты оценивают значения входных данных и определяют выходные значения на основании Булевой логики. Эти инструменты обрабатывают наборы растровых данных в пяти основных категориях: побитовое, булево, комбинаторное, логическое и реляционное. В следующей таблице содержится перечень доступных логических математических инструментов и дано краткое описание каждого.
Инструмент | Описание |
---|---|
Выполняет побитовую операцию And для бинарных значений двух входных растров. | |
Выполняет операцию побитового сдвига влево над двоичными значениями двух исходных растров. | |
Выполняет Побитовую операцию Not (дополнение) над двоичными значениями входного растра. | |
Выполняет побитовую операцию "или" над двоичными значениями двух входных растров. | |
Выполняет побитовую операцию "Сдвиг вправо" над двоичными значениями входного растра. | |
Выполняет побитовую операцию "исключающее или" над двоичными значениями двух входных растров. |
Инструмент | Описание |
---|---|
Выполняет Булеву операцию И (And) для значений ячеек двух входных растров. Если оба входных значений истинны (ненулевые), выходное значение равно 1. Если одно или оба значения ложны (нулевые), выходное значение – 0. | |
Выполняет Булеву операцию Нет (Not) (дополнительно) для значений ячеек двух входных растров. Если входные значения истинны (ненулевые), выходное значение будет 0. Если входные значения ложные (нулевые), выходное значение будет 1. | |
Выполняет Булеву операцию ИЛИ (OR) для значений ячеек двух входных растров. Если одно или оба входных значений истинны (ненулевые), выходное значение 1. Если оба входные значения ложны (нулевые) – выходное значение – 0. | |
Выполняет Булеву операцию исключающего Или (XOr) для значений ячеек двух входных растров. Если одно входное значение истинно (ненулевое), а остальные ложные (нулевые) выходное значение будет 1. Если оба входных значения истинные или оба входных значения ложные, выходное значение будет 0. |
Инструмент | Описание |
---|---|
Выполняет Комбинаторную операцию исключающего И (And) для значений ячеек двух входных растров. Если оба входных значения истинны (не-нулевые), выходное значение будет уникальным для каждой комбинации входных значений. Если одно или оба значения ложны (нулевые) – выходное значение – 0. | |
Выполняет Комбинаторную операцию исключающего Или (Or) для значений ячеек двух входных растров. Если какое-либо входное значение истинно (не-нулевое), выходное значение будет уникальным для каждой комбинации входных значений. Если оба значения ложны (нулевые) – выходное значение – 0. | |
Выполняет Комбинаторную операцию исключающего Или (XOr) для значений ячеек двух входных растров. Если одно входное значение истинно (не-нулевое), а другое – ложное (нулевое), выходное значение будет уникальным для каждой комбинации входных значений. Если оба входных значения истинные или оба входных значения ложные, выходное значение будет равно нулю. |
Инструмент | Описание |
---|---|
Выполняет относительную операцию "равно " для двух входных растров по принципу ячейка-за-ячейкой. Возвращает значение 1 для ячеек выходного растра, в которых значение ячейки первого входного растра равно значению соответствующей ячейки второго входного растра и значение 0 для ячеек, в которых значения не равны. | |
Выполняет относительную операцию "больше чем " для двух входных растров по принципу ячейка-за-ячейкой. Возвращает значение 1 для ячеек, в которых значение в первом растра больше, чем значение во втором растра и 0 для ячеек в которых значения первого растра меньше значений второго. | |
Выполняет относительную операцию "равно " для двух входных растров по принципу ячейка-за-ячейкой. Возвращает значение 1 для ячеек, в которых значение в первом растра больше или равно, чем значение во втором растра и 0 для ячеек в которых значения первого растра меньше значений второго. | |
Выполняет относительную операцию "меньше чем " для двух входных растров по принципу ячейка-за-ячейкой. Возвращает значение 1 для ячеек, в которых значение в первом растре меньше, чем значение во втором растре и 0 если это не так. | |
Выполняет относительную операцию "меньше чем " для двух входных растров по принципу ячейка-за-ячейкой. Возвращает значение 1 для ячеек, в которых значение в первом растра меньше или равно, чем значение во втором растра и 0 для остальных ячеек. | |
Выполняет относительную операцию "не равно " для двух входных растров по принципу ячейка-за-ячейкой. Выдает значение 1 для ячеек, где значения на первом растре не равны значениям на втором растре и 0 для ячеек, значения которых равны. |
Инструмент | Описание |
---|---|
Определяет, какие значения из первых входных данных логически отличаются от значений вторых входных данных на основе "ячейка-за-ячейкой ". Если значения двух входных растров разные, значения первого входного растра записываются в выходной растр. Если значения двух входных растров одинаковые, в соответствующей ячейке выходного растра будет 0. | |
Определяет, какие значения из первых входных данных содержатся в наборе других входных данных на основе "ячейка-за-ячейкой ". Для каждой ячейки, если значение первого входного растра находится в списке других входных данных, это значение будет присвоено выходному растру. Если оно не найдено, выходным значением в ячейке будет значение NoData. | |
Определяет, какие значения из входного растра являются значениями NoData на основе "ячейка-за-ячейкой ". Возвращает значение 1, если входное значение – NoData и 0 для ячеек, значение которых не NoData. | |
Для ненулевых значений ячеек в первых входных данных, выходное значение будет значением первых входных данных. Если ячейки входного растра равны нулю, выходные значения для этих ячеек будут соответствовать ячейкам второго входного растра. | |
Выполняет Булеву оценку входного растра с помощью логического выражения. Когда выражение оценивается как истинное, выходной ячейке присваивается значение 1. Если выражение ложно, выходной ячейке присваивается значение 0. |
Математические (Тригонометрические)
Тригонометрические математические инструменты выполняют различные тригонометрические вычисления над значениями во входном растре. В следующей таблице перечислены доступные тригонометрические математические инструменты, и предоставлено краткое описание каждого:
Инструмент | Описание |
---|---|
Вычисляет арккосинус значений ячеек растра. | |
Вычисляет гиперболический арккосинус ячеек растра. | |
Вычисляет арксинус ячеек растра. | |
Вычисляет гиперболический арксинус ячеек растра. | |
Вычисляет арктангенс значений ячеек растра. | |
Вычисляет гиперболический арктангенс значений ячеек растра. | |
Вычисляет гиперболический арктангенс значений ячеек растра. | |
Вычисляет косинус ячеек растра. | |
Вычисляет гиперболический косинус ячеек растра. | |
Вычисляет синус ячеек растра. | |
Вычисляет гиперболический синус ячеек растра. | |
Вычисляет тангенс значений ячеек растра. | |
Вычисляет гиперболический тангенс значений ячеек растра. |
Motion Imagery
Инструменты группы Движущиеся изображения предназначены для управления движущимися изображениями, в том числе полноформатным видео, их обработки и анализа. В следующей таблице приводится список доступных инструментов группы Движущиеся изображения и дается их краткое описание.
Инструмент | Описание |
---|---|
Извлекает изображения кадров видео и связанные метаданные из FMV-совместимого потока видео и сохраняет данные в директорию. | |
Извлекает метаданные платформы, центра кадра, контура кадра и атрибутов из видео, совместимого с FMV и сохраняет их в директорию. | |
Создает FMV-совместимый видео файл, который сочетает архивный видео файл и файл метаданных, синхронизированные по временным меткам. |
Многомерный анализ
Инструменты из группы Многомерный анализ позволяют выполнять анализ научных данных по нескольким переменным и измерениям. В следующей таблице содержится список доступных инструментов многомерного анализа и дано краткое описание каждого.
Инструмент | Описание |
---|---|
Генерирует набор многомерных растровых данных путем комбинирования существующих переменных многомерного растра вдоль измерения. | |
Вычисляет статистику по движущемуся окну для многомерных данных по заданному измерению. | |
Извлекает значение измерения или индекс канала, при котором достигается заданная статистика для каждого пиксела в многомерном или многоканальном растре. | |
Вычисляет аномалию для каждого среза в существующем многомерном растре с целью создания нового многомерного растра. | |
Оценивает тренд для каждого пиксела вдоль измерения для одной или нескольких переменных в многомерном растре. | |
Уменьшает количество компонентов, которые могут учитывать дисперсию всего многомерного растра, так что пространственный и временной шаблон могут быть легко идентифицирован. | |
Вычисляет прогнозируемый многомерный растр, используя выходной растр тренда из инструмента Создать растр тренда. | |
Создает таблицу, содержащую количество пикселов для каждого класса в каждом срезе входного категориального растра. |
Наложение
Инструмент группы Наложение выполняет разные операции над несколькими наложенными друг на друга растрами. В следующей таблице содержится список доступных инструментов Наложения и дано краткое описание каждого.
Инструмент | Описание |
---|---|
Наложение нескольких растров с умножением каждого на присвоенный им вес и общим суммированием. |
Статистика
Используйте Статистические инструменты для выполнения статистических операций с растрами на локальной, окрестностной или зональной основе. В следующей таблице перечислены инструменты, которые выполняют статистический анализ, и дано краткое описание каждого.
Инструмент | Описание |
---|---|
Вычисляет статистику по ячейкам на основании значений из нескольких растров. Доступная статистика: Большинство, Максимум, Среднее, Медиана, Минимум, Меньшинство, Процентиль, Диапазон, Среднеквадратическое отклонение, Сумма и Разнообразие. | |
Извлекает значение измерения (например, даты, высоты или глубины), в котором получается определенная статистика в стеке растров в многомерном наборе растровых данных. | |
Вычисляет для каждой входной ячейки статистику значений в определенной вокруг нее окрестности. | |
Суммирует значения растра в пределах зон другого набора данных. | |
Суммирует значения растра в пределах зон другого набора данных и записывает результаты в таблицу. |
Радар с синтезированной апертурой
Группа инструментов ArcGIS, содержащий инструменты для исправления, обработки и анализа данных, полученных радаром с синтезированной апертурой (SAR). В следующей таблице приводится список доступных инструментов Радар с синтезированной апертурой и дается их краткое описание.
Инструмент | Описание |
---|---|
Ортотрансформирует входные данные радиолокатора с синтезированной апертурой (SAR), используя алгоритм обратного геокодирования с доплеровским диапазоном. | |
Обновляет орбитальную информацию в наборе данных радиолокатора с синтезированной апертурой (SAR), используя более точный векторный файл состояния орбиты (OSV). | |
Преобразует отражательную способность входного радиолокатора с синтезированной апертурой (SAR) в физические единицы нормализованного обратного рассеяния путем нормализации отражательной способности с использованием базовой плоскости. | |
Корректирует входные данные радиолокатора с синтезированной апертурой (SAR) с учетом радиометрических искажений, вызванных топографией. | |
Вычисляет различные индексы SAR, такие как радиолокационный индекс растительности (RVI), радиолокационный индекс деградации леса (RFDI) и индекс структуры полога (CSI). | |
Преобразует масштабирование входных данных изображений радиолокатора с синтезированной апертурой (SAR) между амплитудой и интенсивностью, между линейными величинами и децибелами (дБ), а также между сложностью и интенсивностью. | |
Создает трехканальный растр из многоканального набора растровых данных. | |
Корректирует входные данные радиолокатора с синтезированной апертурой (SAR) на наличие спеклов, которые являются результатом когерентного освещения, напоминающего зернистость или эффект соли с перцем. | |
Обнаруживает потенциально яркие искусственные объекты, такие как корабли, нефтяные вышки и ветряные мельницы, при этом маскируя данные радара с синтезированной апертурой (SAR) за пределами интересующей области. | |
Идентифицирует потенциальные темные пиксели, относящиеся к разливам нефти и водорослям, при этом маскируя данные радара с синтезированной апертурой (SAR) за пределами интересующей области. | |
Загружает обновленные файлы орбиты для входных данных радиолокатора с синтезированной апертурой (SAR). | |
Усредняет входные данные радиолокатора с синтезированной апертурой (SAR) по дальности и азимуту для аппроксимации квадратных пикселей, уменьшения пятен и сокращения времени обработки SAR. | |
Исправляет помехи обратного рассеяния, вызванные тепловым шумом во входных данных радиолокатора с синтезированной апертурой (SAR), что обеспечивает более плавное изображение. |
Утилиты
Группа инструментов Утилиты содержит инструменты для предварительной и постобработки изображений и производных продуктов.
Инструмент | Описание |
---|---|
Набор инструментов Утилиты содержит инструменты для предварительной и постобработки изображений и производных продуктов. |
Связанные разделы
- Введение в дополнительный модуль ArcGIS Pro Image Analyst
- Обзор набора инструментов Image Analyst
- Обзор группы инструментов Классификация и Распознавание закономерностей
- Обзор группы инструментов Выявление изменений
- Обзор группы инструментов Глубокое обучение
- Обзор группы инструментов Математические в Image Analyst
- Обзор группы инструментов Условие
- Обзор группы инструментов Математические-Логические в Image Analyst
- Обзор группы инструментов Математические-Тригонометрические в Image Analyst
- Обзор группы инструментов Статистические в Image Analyst
- Обзор группы инструментов Алгебра карт в Image Analyst
- Обзор группы инструментов Наложение в Image Analyst
- Обзор группы инструментов Движущиеся изображения
- Обзор группы инструментов Многомерный анализ