Étiquette | Explication | Type de données |
From Raster
| The input images of the previous raster. | Raster Dataset; Raster Layer; Mosaic Layer; Image Service; Map Server; Map Server Layer; Internet Tiled Layer |
To Raster
| The input images of the recent raster. | Raster Dataset; Raster Layer; Mosaic Layer; Image Service; Map Server; Map Server Layer; Internet Tiled Layer |
Output Classified Raster
| The output classified raster that shows the change. | Raster Dataset |
Model Definition | Le paramètre Définition du modèle Esri peut être un fichier JSON de définition de modèle Esri (.emd), une chaîne JSON ou un paquetage de modèle d’apprentissage profond (.dlpk). Une chaîne JSON est utile lorsque cet outil est utilisé sur le serveur de manière à pouvoir coller la chaîne JSON au lieu de télécharger le fichier .emd. Le fichier .dlpk doit être stocké localement. Il contient le chemin d’accès au fichier du modèle binaire d’apprentissage profond, le chemin d’accès à la fonction raster Python à utiliser et d’autres paramètres, tels que le remplissage ou la taille de préférence des tuiles. | File; String |
Arguments (Facultatif) | Les arguments de la fonction sont définis dans la classe de fonction raster Python. C’est là que vous répertoriez les paramètres d’apprentissage profond supplémentaires et les arguments des expériences et améliorations, tels qu’un seuil de confiance pour l’ajustement de la sensibilité. Les noms des arguments sont alimentés lors de la lecture du module Python. | Value Table |
Disponible avec une licence Image Analyst.
Synthèse
Exécute un modèle d'apprentissage profond entraîné pour détecter les changements entre deux rasters.
Cet outil nécessite un fichier de définition de modèle contenant des informations de modèle entraîné. Le fichier de définition de modèle peut être un fichier JSON de définition de modèle Esri (.emd) ou un paquetage de modèle d’apprentissage profond. Il doit contenir le chemin d’accès à la fonction raster Python à appeler pour traiter chaque objet, ainsi que le chemin d’accès au fichier de modèle d’apprentissage profond binaire entraîné.
Utilisation
Les entrées pour cet outil sont deux images : l'une d'une période précédente et l'autre d'une période plus récente. La sortie est un jeu de données raster classé qui montre les changements entre les deux entrées de raster.
Vous devez installer l’API Python de structure d’apprentissage profond qui convient (telle que TensorFlow ou PyTorch) dans l’environnement ArcGIS Pro Python. Si vous ne le faites pas, une erreur se produit lorsque vous ajoutez le fichier de définition du modèle Esri à l’outil. Procurez-vous les informations de structure appropriées auprès de l’auteur du fichier de définition du modèle Esri.
Pour configurer votre machine afin d’utiliser des structures d’apprentissage profond dans ArcGIS Pro, consultez la rubrique Installer les structures d’apprentissage profond pour ArcGIS.
Cet outil appelle une API Python d’apprentissage profond tierce (telle que TensorFlow, PyTorch ou Keras) et utilise la fonction raster Python spécifiée pour traiter chaque objet.
Le paramètre Définition du modèle Esri peut être un fichier JSON de définition de modèle Esri (.emd), une chaîne JSON ou un paquetage de modèle d’apprentissage profond (.dlpk). Une chaîne JSON est utile lorsque cet outil est utilisé sur le serveur de manière à pouvoir coller la chaîne JSON au lieu de télécharger le fichier .emd. Le fichier .dlpk doit être stocké localement.
Additional input parameters may be necessary such as mini-batch size, padding size, and so on.
See the sample below for a model definition JSON file .emd.
Sample model definition JSON file
{ "Framework": "", "ModelConfiguration":" ", "ModelFile":"", "InferenceFunction":"", "ModelType":"", "ImageHeight":256, "ImageWidth":256, "ExtractBands":[0,1,2], "CropSizeFixed": 1, "BlackenAroundFeature": 1, "Classes": [ { "Value": 0, "Name": "Building", "Color": [255, 0, 0] } ] }
Pour en savoir plus sur les exigences relatives à l’exécution de cet outil, ainsi que sur les problèmes que vous pouvez rencontrer, consultez les rubriques FAQ Apprentissage profond. .
Pour plus d’informations sur l’apprentissage profond, reportez-vous à la rubrique Apprentissage profond dans ArcGIS Pro.
Paramètres
DetectChangeUsingDeepLearning(from_raster, to_raster, out_classified_raster, in_model_definition, {arguments})
Nom | Explication | Type de données |
from_raster | The input images of the previous raster. | Raster Dataset; Raster Layer; Mosaic Layer; Image Service; Map Server; Map Server Layer; Internet Tiled Layer |
to_raster | The input images of the recent raster. | Raster Dataset; Raster Layer; Mosaic Layer; Image Service; Map Server; Map Server Layer; Internet Tiled Layer |
out_classified_raster | The output classified raster that shows the change. | Raster Dataset |
in_model_definition | La valeur du paramètre in_model_definition peut être un fichier JSON de définition de modèle Esri (.emd), une chaîne JSON ou encore un paquetage de modèle d’apprentissage profond (.dlpk). Une chaîne JSON est utile lorsque cet outil est utilisé sur le serveur de manière à pouvoir coller la chaîne JSON au lieu de télécharger le fichier .emd. Le fichier .dlpk doit être stocké localement. Il contient le chemin d’accès au fichier du modèle binaire d’apprentissage profond, le chemin d’accès à la fonction raster Python à utiliser et d’autres paramètres, tels que le remplissage ou la taille de préférence des tuiles. | File; String |
arguments [arguments,...] (Facultatif) | Les arguments de la fonction sont définis dans la classe de fonction raster Python. C’est là que vous répertoriez les paramètres d’apprentissage profond supplémentaires et les arguments des expériences et améliorations, tels qu’un seuil de confiance pour l’ajustement de la sensibilité. Les noms des arguments sont alimentés lors de la lecture du module Python. | Value Table |
Exemple de code
This example runs a deep learning model to find the difference between two images.
# Import system modules
import arcpy
from arcpy.ia import *
# Check out the ArcGIS Image Analyst extension license
arcpy.CheckOutExtension("ImageAnalyst")
DetectChangeUsingDeepLearning("c://detectchange//input_image1.tif",
"c://detectchange//input_image2.tif", "c://detectchange//output_difference.tif",
"c://detectchange/detectBuilding.emd", "padding 0;score_threshold 0.6;batch_size 4")
This example runs a deep learning model to find the difference between two images.
# Import system modules
import arcpy
from arcpy.ia import *
"""
Usage: DetectObjectsUsingDeepLearning(from_raster, to_raster, out_classified_raster,
in_model_definition, {model_arguments})
"""
# Check out the ArcGIS Image Analyst extension license
arcpy.CheckOutExtension("ImageAnalyst")
# Set local variable
from_raster = r"c:/detectchange/input_image1.tif"
to_raster = r"c:/detectchange/input_image2.tif"
out_classified_raster = r"c:/detectchange/output_difference.tif"
in_model_definition = r"c:/ detectchange/detectbuilding.emd"
# arcpy.env.processorType = "GPU"
# arcpy.env.gpuId = 0
# Execute
DetectChangeUsingDeepLearning(from_raster, to_raster, out_classified_raster,
in_model_definition, "padding 0;score_threshold 0.6;batch_size 4")
Environnements
Cas particuliers
Informations de licence
- Basic: Nécessite Image Analyst
- Standard: Nécessite Image Analyst
- Advanced: Nécessite Image Analyst
Rubriques connexes
Vous avez un commentaire à formuler concernant cette rubrique ?