Vue d’ensemble du jeu d’outils Deep Learning

Cette documentation ArcGIS 3.1 a été archivée et n’est plus mise à jour. Certains contenus et liens peuvent être obsolètes. Consultez la dernière version de la documentation.

Disponible avec une licence Image Analyst.

Le jeu d’outils Deep Learning contient des outils qui détectent des entités spécifiques dans une image et classent les pixels dans un jeu de données raster.

Le Deep Learning est un type d’intelligence artificielle et de Machine Learning qui détecte des entités dans l’imagerie en utilisant plusieurs couches dans des réseaux neuronaux, où une ou plusieurs entités uniques de l’image peuvent être extraites dans chaque couche. Les outils du jeu d’outils Deep Learning font appel au processeur graphique pour réaliser rapidement l’analyse.

Ces outils ArcGIS Pro exploitent les modèles qui ont été entraînés à détecter des entités spécifiques dans des infrastructures de Deep Learning tierces (TensorFlow, CNTK et PyTorch, par exemple) et produisent des entités ou des cartes de classe.

Le tableau suivant répertorie les outils de Deep Learning disponibles et en donne une brève description :

OutilDescription

Classer des objets à l’aide du Deep Learning

Exécute un modèle de Deep Learning entraîné sur un raster en entrée et une classe d’entités facultative afin de générer une classe d’entités ou une table dans laquelle un objet ou une entité en entrée a une catégorie ou une étiquette de classe attribuée.

Cet outil nécessite un fichier de définition de modèle contenant des informations de modèle entraîné. Le modèle peut être entraîné avec l’outil Préparer le modèle d’apprentissage profond ou par un logiciel d’entraînement tiers tel que TensorFlow, PyTorch ou Keras. Le fichier de définition de modèle peut être un fichier JSON de définition de modèle Esri (.emd) ou un paquetage de modèle de Deep Learning et doit contenir le chemin d’accès à la fonction raster Python à appeler pour traiter chaque objet, ainsi que le chemin d’accès au fichier de modèle de Deep Learning binaire entraîné.

Classer des pixels à l’aide du Deep Learning

Exécute un modèle d’apprentissage profond entraîné sur un raster en entrée afin de générer un raster classé, une étiquette de classe étant attribuée à chaque pixel valide.

Cet outil nécessite un fichier de définition de modèle contenant des informations de modèle entraîné. Le modèle peut être entraîné avec l’outil Préparer le modèle d’apprentissage profond ou par un logiciel d’entraînement tiers tel que TensorFlow, PyTorch ou Keras. Le fichier de définition de modèle peut être un fichier JSON de définition de modèle Esri (.emd) ou un paquetage de modèle de Deep Learning et doit contenir le chemin d’accès à la fonction raster Python à appeler pour traiter chaque objet, ainsi que le chemin d’accès au fichier de modèle de Deep Learning binaire entraîné.

Calculer la précision pour la détection d’objets

Calcule la précision d’un modèle d’apprentissage profond en comparant les objets détectés par l’outil Détecter des objets à l’aide de l’apprentissage profond aux données de réalité de terrain.

Détecter les changements à l’aide du Deep Learning

Exécute un modèle de Deep Learning entraîné pour détecter les changements entre deux rasters.

Cet outil nécessite un fichier de définition de modèle contenant des informations de modèle entraîné. Le fichier de définition de modèle peut être un fichier JSON de définition de modèle Esri (.emd) ou un paquetage de modèle de Deep Learning et doit contenir le chemin d’accès à la fonction raster Python à appeler pour traiter chaque objet, ainsi que le chemin d’accès au fichier de modèle de Deep Learning binaire entraîné.

Détecter des objets à l’aide du Deep Learning

Exécute un modèle d’apprentissage profond formé sur un raster en entrée pour générer une classe d'entités contenant les objets qu’il trouve. Les entités peuvent correspondre à des emprises ou des polygones autour des objets trouvés ou encore des points situés aux centres des objets.

Cet outil nécessite un fichier de définition de modèle contenant des informations de modèle entraîné. Le modèle peut être entraîné avec l’outil Préparer le modèle d’apprentissage profond ou par un logiciel d’entraînement tiers tel que TensorFlow, PyTorch ou Keras. Le fichier de définition de modèle peut être un fichier JSON de définition de modèle Esri (.emd) ou un paquetage de modèle de Deep Learning et doit contenir le chemin d’accès à la fonction raster Python à appeler pour traiter chaque objet, ainsi que le chemin d’accès au fichier de modèle de Deep Learning binaire entraîné.

Exporter les données d’entraînement pour le Deep Learning

Convertit des données vectorielles ou raster étiquetées en jeux de données d’entraînement pour l’apprentissage profond via une image télédétectée. La sortie est un dossier de fragments d’image et un dossier de fichiers de métadonnées au format spécifié.

Extraire des entités à l’aide de modèles IA

Exécute un ou plusieurs modèles de Deep Learning pré-entraînés sur un raster en entrée pour extraire des entités et automatiser le post-traitement des sorties inférées.

Suppression non maximale

Identifie les entités dupliquées de la sortie de l’outil Détecter des objets à l’aide de l’apprentissage profond pour procéder à un prétraitement, et génère une nouvelle sortie sans entités dupliquées. L’outil Détecter des objets à l’aide de l’apprentissage profond peut renvoyer plusieurs emprises ou polygones pour le même objet ; il s’agit notamment d’une conséquence indirecte d’un tuilage. En cas de superposition de deux entités au-delà d’un ratio maximal donné, l’entité dont la valeur de confiance est la plus faible est supprimée.

Entraîner le modèle de Deep Learning

Entraîne un modèle d’apprentissage profond à l’aide de la sortie de l’outil Export Training Data For Deep Learning (Exporter les données d’entraînement pour l’apprentissage profond).

Entraîner à l’aide d’AutoML

Entraîne un modèle de Deep Learning en créant des pipelines d’entraînement et en automatisant une grande partie du processus d’entraînement. Cela inclut l’augmentation des données, la sélection des modèles, l’optimisation des hyperparamètres et la déduction de la taille de lot. Les sorties de l’outil comprennent des mesures de performance du meilleur modèle sur les données d’entraînement, ainsi que le paquetage de modèle de Deep Learning entraîné (fichier .dlpk) utilisable en entrée de l’outil Extraire des entités à l’aide de modèles IA pour réaliser une prévision sur une nouvelle imagerie.

Outils du jeu d’outils Deep Learning

Rubriques connexes