Disponible con una licencia de Data Reviewer.
Para producir productos de información de alta calidad y realizar un análisis espacial con exactitud, sus datos de origen deben ser de alta calidad y estar bien mantenidos. Data Reviewer permite administrar datos para la producción y el análisis de datos al proporcionar un sistema para automatizar y simplificar el control de calidad de datos, el cual puede mejorar la integridad de los datos.
Data Reviewer proporciona un conjunto de herramientas de control de calidad (QC) que permiten un proceso de revisión de datos eficiente y uniforme. Entre ellas existen herramientas que permiten realizar análisis de datos automáticos y semiautomáticos para detectar errores en la integridad, atribución o relaciones espaciales con otras entidades. Los errores detectados se almacenan para que pueda revisarlos para corregir los flujos de trabajo y realizar informes sobre la calidad de los datos.
Revisión de datos automática
La revisión de datos automática evalúa la calidad de una entidad sin la intervención del usuario. Data Reviewer incluye una biblioteca de comprobaciones configurables que permiten validar los datos en función de los requisitos de calidad. Las comprobaciones se configuran para evaluar diferentes aspectos de la calidad de una entidad y la adecuación para su uso.
Para obtener más información sobre los flujos de trabajo automáticos de Data Reviewer para evaluar la calidad de los datos, consulte los siguientes temas:
Revisión de datos semiautomática
No todos los errores de los datos se pueden detectar utilizando métodos automatizados. La revisión semiautomática evalúa la calidad de los datos utilizando métodos en los que normalmente intervienen flujos de trabajo guiados que requieren interacción y entradas por parte de un usuario. La revisión visual es la forma más común de revisión semiautomática y se utiliza para evaluar la calidad de formas que la revisión automática de datos no puede. Aquí se incluye la identificación de entidades que faltan, están mal colocadas o mal codificadas, así como de otros problemas que no se pueden detectar con las comprobaciones automáticas.
Para obtener más información sobre cómo utilizar Data Reviewer para implementar flujos de trabajo semiautomáticos para evaluar la calidad de los datos, consulte los siguientes temas:
Administración de errores
Data Reviewer permite administrar los resultados de error de la detección mediante procesos de corrección y verificación. Estas capacidades mejoran la calidad de los datos al identificar el origen, la ubicación y la causa de los errores. Se reducen los costes y se evita el trabajo duplicado porque se dispone de información sobre cómo se detectó el error, quién lo corrigió y si la corrección se verificó como aceptable.
El seguimiento de los errores detectados durante el proceso de revisión de datos se realiza mediante un proceso de ciclo de vida definido. Este proceso incluye tres fases del ciclo de vida: revisión, corrección y verificación.
Cada fase contiene uno o más valores de estado que describen las acciones tomadas conforme el error avanza de una fase a otra.
Para obtener más información sobre los flujos de trabajo de administración de errores de Data Reviewer , consulte los temas siguientes: